Spaces:
Sleeping
Sleeping
| from functools import lru_cache | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| from huggingface_hub import hf_hub_download | |
| from cap import Predictor | |
| def load_predictor(model): | |
| predictor = Predictor(hf_hub_download( | |
| f'7eu7d7/CAPTCHA_recognize', | |
| model, | |
| ), ckpt_name=model) | |
| return predictor | |
| def process_image(image, model_name): | |
| """ | |
| Process the uploaded image with selected model | |
| """ | |
| if image is None: | |
| return "Please upload an image first" | |
| # Convert image to PIL format if needed | |
| if isinstance(image, np.ndarray): | |
| img = Image.fromarray(image.astype('uint8')).convert('RGB') | |
| else: | |
| img = image.convert('RGB') | |
| try: | |
| predictor = load_predictor(model_name) | |
| text = predictor.pred_img(img, show=False) | |
| return text | |
| except Exception as e: | |
| return f"Error processing image: {str(e)}" | |
| # Create Gradio interface | |
| with gr.Blocks(title="CAPTCHA Recognize") as demo: | |
| with gr.Row(): | |
| # Left column - Input area | |
| with gr.Column(scale=1): | |
| image_input = gr.Image( | |
| label="Upload CAPTCHA Image", | |
| type="pil", | |
| height=300 | |
| ) | |
| # Model selection dropdown | |
| model_dropdown = gr.Dropdown( | |
| label="Select Model", | |
| choices=[ | |
| "captcha-2000.safetensors", | |
| "captcha-7400.safetensors", | |
| "captcha-caformer-v2-6200.safetensors", | |
| "captcha-caformer-v2-13000.safetensors", | |
| ], | |
| value="captcha-caformer-v2-13000.safetensors", # 默认选择 | |
| interactive=True | |
| ) | |
| # Run button | |
| process_btn = gr.Button( | |
| "Run", | |
| variant="primary", | |
| size="lg" | |
| ) | |
| # Right column - Output area | |
| with gr.Column(scale=1): | |
| text_output = gr.Textbox( | |
| label="Result", | |
| lines=4, | |
| interactive=False | |
| ) | |
| # Bind events | |
| process_btn.click( | |
| fn=process_image, | |
| inputs=[image_input, model_dropdown], | |
| outputs=[text_output] | |
| ) | |
| # Launch the application | |
| if __name__ == "__main__": | |
| demo.launch() |