File size: 9,247 Bytes
ae0b5a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
"""Kaggle integration β push and run merge notebooks on free T4 GPUs."""
import json
import os
import tempfile
import requests
from typing import Optional
KAGGLE_API_URL = "https://www.kaggle.com/api/v1"
def _kaggle_headers(username: str, api_key: str) -> dict:
"""Create auth headers for Kaggle API (Basic auth)."""
import base64
creds = base64.b64encode(f"{username}:{api_key}".encode()).decode()
return {
"Authorization": f"Basic {creds}",
"Content-Type": "application/json",
}
def push_and_run_kernel(
notebook_json: str,
kernel_title: str,
kaggle_username: str,
kaggle_key: str,
enable_gpu: bool = True,
enable_internet: bool = True,
) -> dict:
"""Push a notebook to Kaggle and auto-run it.
Args:
notebook_json: The notebook content as JSON string
kernel_title: Title for the Kaggle kernel
kaggle_username: Kaggle username
kaggle_key: Kaggle API key
enable_gpu: Enable T4 GPU (free tier)
enable_internet: Enable internet access (needed for HF downloads)
Returns:
dict with status, url, and any errors
"""
if not kaggle_username or not kaggle_key:
return {
"success": False,
"error": (
"**Kaggle credentials required**\n\n"
"1. Go to [kaggle.com/settings](https://www.kaggle.com/settings)\n"
"2. Scroll to **API** section\n"
"3. Click **Create New Token** (downloads `kaggle.json`)\n"
"4. Copy your username and key from that file"
),
}
# Clean the title into a valid slug
slug = kernel_title.lower().replace(" ", "-")
slug = "".join(c for c in slug if c.isalnum() or c == "-")[:50]
kernel_slug = f"{kaggle_username}/{slug}"
headers = _kaggle_headers(kaggle_username, kaggle_key)
# Prepare kernel push payload
# Kaggle API expects the notebook source as a string
push_data = {
"id": kernel_slug,
"title": kernel_title[:50],
"code_file_name": f"{slug}.ipynb",
"code_file_content": notebook_json,
"language": "python",
"kernel_type": "notebook",
"is_private": True,
"enable_gpu": enable_gpu,
"enable_internet": enable_internet,
"dataset_sources": [],
"competition_sources": [],
"kernel_sources": [],
"category_ids": [],
}
try:
# Push kernel (this also triggers execution)
resp = requests.post(
f"{KAGGLE_API_URL}/kernels/push",
headers=headers,
json=push_data,
timeout=30,
)
if resp.status_code == 200:
result = resp.json()
kernel_url = f"https://www.kaggle.com/code/{kernel_slug}"
return {
"success": True,
"url": kernel_url,
"edit_url": f"{kernel_url}/edit",
"message": (
f"**Kernel pushed and running!**\n\n"
f"Your merge is now executing on Kaggle's free T4 GPU.\n\n"
f"- **View & Edit:** [{kernel_slug}]({kernel_url}/edit)\n"
f"- **Status:** [Check output]({kernel_url})\n\n"
f"The kernel will run automatically. Check back in ~15-30 min for 7B models.\n\n"
f"*Tip: Kaggle gives you 30 hours/week of free GPU time.*"
),
"ref": result.get("ref", ""),
"version": result.get("versionNumber", 1),
}
elif resp.status_code == 401:
return {
"success": False,
"error": "Invalid Kaggle credentials. Check your username and API key.",
}
elif resp.status_code == 403:
return {
"success": False,
"error": "Kaggle API access forbidden. Make sure your API token has kernel permissions.",
}
else:
error_detail = ""
try:
error_detail = resp.json().get("message", resp.text[:200])
except Exception:
error_detail = resp.text[:200]
return {
"success": False,
"error": f"Kaggle API error ({resp.status_code}): {error_detail}",
}
except requests.exceptions.Timeout:
return {"success": False, "error": "Request timed out. Try again."}
except Exception as e:
return {"success": False, "error": f"Error: {str(e)}"}
def check_kernel_status(
kernel_slug: str,
kaggle_username: str,
kaggle_key: str,
) -> dict:
"""Check the execution status of a Kaggle kernel.
Args:
kernel_slug: Full kernel slug (username/kernel-name)
kaggle_username: Kaggle username
kaggle_key: Kaggle API key
Returns:
dict with status info
"""
headers = _kaggle_headers(kaggle_username, kaggle_key)
try:
resp = requests.get(
f"{KAGGLE_API_URL}/kernels/status",
headers=headers,
params={"userName": kernel_slug.split("/")[0], "kernelSlug": kernel_slug.split("/")[1]},
timeout=15,
)
if resp.status_code == 200:
data = resp.json()
status = data.get("status", "unknown")
status_emoji = {
"queued": "β³",
"running": "π",
"complete": "β
",
"error": "β",
"cancelAcknowledged": "π«",
}.get(status, "β")
return {
"success": True,
"status": status,
"display": f"{status_emoji} **{status.upper()}**",
"failure_message": data.get("failureMessage", ""),
}
else:
return {"success": False, "error": f"API error: {resp.status_code}"}
except Exception as e:
return {"success": False, "error": str(e)}
def generate_kaggle_notebook(
merge_notebook: dict,
hf_token_secret: bool = True,
) -> str:
"""Adapt a merge notebook for Kaggle execution.
Modifies the notebook to:
- Use Kaggle's GPU environment
- Reference HF token from Kaggle secrets (if enabled)
- Add Kaggle-specific output handling
Args:
merge_notebook: The notebook dict from notebook_generator
hf_token_secret: If True, use Kaggle Secrets for HF token
Returns:
Notebook as JSON string
"""
nb = json.loads(json.dumps(merge_notebook)) # deep copy
# Add Kaggle environment setup cell at the beginning (after the header)
kaggle_setup = {
"cell_type": "code",
"metadata": {},
"source": [
"# Kaggle Environment Setup\n",
"import os\n",
"\n",
"# Use Kaggle Secrets for HF token (add in Kaggle Settings > Secrets)\n",
"from kaggle_secrets import UserSecretsClient\n",
"try:\n",
" secrets = UserSecretsClient()\n",
" hf_token = secrets.get_secret('HF_TOKEN')\n",
" os.environ['HF_TOKEN'] = hf_token\n",
" os.environ['HUGGING_FACE_HUB_TOKEN'] = hf_token\n",
" print('β
HF Token loaded from Kaggle Secrets')\n",
"except Exception:\n",
" print('β οΈ No HF_TOKEN secret found. Add it in Settings > Secrets if needed.')\n",
"\n",
"# Verify GPU\n",
"import torch\n",
"if torch.cuda.is_available():\n",
" print(f'β
GPU: {torch.cuda.get_device_name(0)}')\n",
" print(f' VRAM: {torch.cuda.get_device_properties(0).total_mem / 1024**3:.1f} GB')\n",
"else:\n",
" print('β οΈ No GPU detected. Enable GPU in kernel settings.')\n",
],
"outputs": [],
"execution_count": None,
}
# Insert after the first markdown cell (header)
if len(nb["cells"]) > 0:
nb["cells"].insert(1, kaggle_setup)
# Replace the HF login cell (notebook_login doesn't work on Kaggle)
for i, cell in enumerate(nb["cells"]):
if cell["cell_type"] == "code":
source = "".join(cell["source"]) if isinstance(cell["source"], list) else cell["source"]
if "notebook_login" in source:
nb["cells"][i]["source"] = [
"# HF Authentication (using Kaggle Secrets)\n",
"from huggingface_hub import login\n",
"import os\n",
"\n",
"hf_token = os.environ.get('HF_TOKEN', '')\n",
"if hf_token:\n",
" login(token=hf_token)\n",
" print('β
Logged in to HuggingFace Hub')\n",
"else:\n",
" print('β οΈ No HF token. Add HF_TOKEN to Kaggle Secrets for gated models.')\n",
]
# Update metadata for Kaggle
nb["metadata"]["kaggle"] = {
"accelerator": "gpu",
"dataSources": [],
"isGpuEnabled": True,
"isInternetEnabled": True,
}
return json.dumps(nb, indent=2, ensure_ascii=False) |