File size: 10,124 Bytes
0249933 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
"""HuggingFace Hub API wrapper for model discovery and info retrieval."""
import json
import time
from dataclasses import dataclass, field
from typing import Optional
from functools import lru_cache
import requests
HF_API = "https://huggingface.co/api"
_session = requests.Session()
_session.headers.update({"Accept": "application/json"})
# Simple in-memory cache with TTL
_cache: dict[str, tuple[float, any]] = {}
CACHE_TTL = 300 # 5 minutes
def _cached_get(url: str, token: Optional[str] = None, ttl: int = CACHE_TTL) -> dict:
"""GET with caching and rate-limit handling."""
now = time.time()
if url in _cache and (now - _cache[url][0]) < ttl:
return _cache[url][1]
headers = {}
if token:
headers["Authorization"] = f"Bearer {token}"
resp = _session.get(url, headers=headers, timeout=15)
if resp.status_code == 429:
retry = int(resp.headers.get("Retry-After", 5))
time.sleep(retry)
resp = _session.get(url, headers=headers, timeout=15)
resp.raise_for_status()
data = resp.json()
_cache[url] = (now, data)
return data
@dataclass
class ModelInfo:
"""Parsed model information from HF Hub."""
model_id: str
model_type: str = "unknown"
architectures: list[str] = field(default_factory=list)
vocab_size: int = 0
hidden_size: int = 0
intermediate_size: int = 0
num_hidden_layers: int = 0
num_attention_heads: int = 0
num_key_value_heads: int = 0
max_position_embeddings: int = 0
torch_dtype: str = "unknown"
pipeline_tag: str = ""
tags: list[str] = field(default_factory=list)
downloads: int = 0
likes: int = 0
size_bytes: int = 0
gated: bool = False
private: bool = False
trust_remote_code: bool = False
error: Optional[str] = None
@property
def param_estimate(self) -> str:
"""Rough parameter count estimate based on architecture."""
if self.size_bytes > 0:
# Rough: model files in bf16 ≈ 2 bytes per param
params = self.size_bytes / 2
if params > 1e9:
return f"{params/1e9:.1f}B"
elif params > 1e6:
return f"{params/1e6:.0f}M"
return "unknown"
@property
def arch_signature(self) -> str:
"""Unique signature for architecture matching."""
return f"{self.model_type}|{self.hidden_size}|{self.intermediate_size}"
@property
def display_name(self) -> str:
"""Short display name (without org prefix)."""
return self.model_id.split("/")[-1] if "/" in self.model_id else self.model_id
@property
def ram_estimate_gb(self) -> float:
"""Estimated RAM needed for merging (roughly 2.5x model size for bf16 merge)."""
if self.size_bytes > 0:
return round(self.size_bytes * 2.5 / (1024**3), 1)
return 0.0
def to_dict(self) -> dict:
return {
"model_id": self.model_id,
"model_type": self.model_type,
"architectures": self.architectures,
"vocab_size": self.vocab_size,
"hidden_size": self.hidden_size,
"intermediate_size": self.intermediate_size,
"num_hidden_layers": self.num_hidden_layers,
"num_attention_heads": self.num_attention_heads,
"torch_dtype": self.torch_dtype,
"pipeline_tag": self.pipeline_tag,
"downloads": self.downloads,
"likes": self.likes,
"param_estimate": self.param_estimate,
"ram_estimate_gb": self.ram_estimate_gb,
"gated": self.gated,
"private": self.private,
}
def fetch_model_info(model_id: str, token: Optional[str] = None) -> ModelInfo:
"""Fetch comprehensive model information from HF Hub.
Args:
model_id: Full model ID (e.g., "Qwen/Qwen2.5-Coder-7B-Instruct")
token: Optional HF API token for gated/private models
Returns:
ModelInfo dataclass with all available information
"""
info = ModelInfo(model_id=model_id)
# Fetch main model info
try:
data = _cached_get(f"{HF_API}/models/{model_id}", token=token)
except requests.exceptions.HTTPError as e:
if e.response.status_code == 401:
info.error = "Gated or private model — HF token required"
info.gated = True
elif e.response.status_code == 404:
info.error = f"Model not found: {model_id}"
else:
info.error = f"API error: {e.response.status_code}"
return info
except Exception as e:
info.error = f"Connection error: {str(e)}"
return info
# Parse basic metadata
info.pipeline_tag = data.get("pipeline_tag", "")
info.tags = data.get("tags", [])
info.downloads = data.get("downloads", 0)
info.likes = data.get("likes", 0)
info.gated = data.get("gated", False) not in (False, None)
info.private = data.get("private", False)
# Parse config (architecture details)
config = data.get("config", {})
if config:
info.model_type = config.get("model_type", "unknown")
info.architectures = config.get("architectures", [])
# Fetch full config.json for detailed architecture info
# (the API endpoint only returns basic config fields)
try:
full_config = _cached_get(
f"https://huggingface.co/{model_id}/resolve/main/config.json",
token=token,
)
info.model_type = full_config.get("model_type", info.model_type)
info.architectures = full_config.get("architectures", info.architectures)
info.vocab_size = full_config.get("vocab_size", 0)
info.hidden_size = full_config.get("hidden_size", 0)
info.intermediate_size = full_config.get("intermediate_size", 0)
info.num_hidden_layers = full_config.get("num_hidden_layers", 0)
info.num_attention_heads = full_config.get("num_attention_heads", 0)
info.num_key_value_heads = full_config.get("num_key_value_heads", 0)
info.max_position_embeddings = full_config.get("max_position_embeddings", 0)
info.torch_dtype = full_config.get("torch_dtype", "unknown")
if "auto_map" in full_config:
info.trust_remote_code = True
except Exception:
# Fall back to basic config from API
if config:
info.vocab_size = config.get("vocab_size", 0)
info.hidden_size = config.get("hidden_size", 0)
else:
info.error = "Could not fetch config.json — model may need trust_remote_code=True"
info.trust_remote_code = True
# Estimate total model size from siblings (files)
siblings = data.get("siblings", [])
total_size = 0
for f in siblings:
fname = f.get("rfilename", "")
size = f.get("size", 0) or 0
# Count only model weight files
if any(fname.endswith(ext) for ext in
[".safetensors", ".bin", ".pt", ".pth", ".gguf"]):
total_size += size
info.size_bytes = total_size
return info
def search_models(
query: str = "",
author: str = "",
architecture: str = "",
limit: int = 20,
sort: str = "downloads",
token: Optional[str] = None,
) -> list[dict]:
"""Search HuggingFace Hub for models.
Args:
query: Search query string
author: Filter by author/organization
architecture: Filter by model_type (e.g., "llama", "qwen2")
limit: Max results to return
sort: Sort by "downloads", "likes", "created", "modified"
token: Optional HF API token
Returns:
List of dicts with basic model info
"""
params = {
"limit": min(limit, 100),
"sort": sort,
"direction": -1,
"config": True,
}
if query:
params["search"] = query
if author:
params["author"] = author
url = f"{HF_API}/models"
try:
data = _cached_get(
f"{url}?{'&'.join(f'{k}={v}' for k, v in params.items())}",
token=token,
ttl=60, # shorter cache for search
)
except Exception as e:
return [{"error": str(e)}]
results = []
for m in data:
config = m.get("config", {}) or {}
model_type = config.get("model_type", "")
# Filter by architecture if specified
if architecture and model_type.lower() != architecture.lower():
continue
results.append({
"model_id": m.get("modelId", ""),
"model_type": model_type,
"pipeline_tag": m.get("pipeline_tag", ""),
"downloads": m.get("downloads", 0),
"likes": m.get("likes", 0),
"tags": m.get("tags", [])[:5],
})
return results[:limit]
def get_popular_base_models(architecture: str = "", token: Optional[str] = None) -> list[dict]:
"""Get popular base models for a given architecture type.
Useful for suggesting base_model in merge configs.
"""
# Common base models by architecture
known_bases = {
"llama": [
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-2-7b-hf",
],
"mistral": [
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
],
"qwen2": [
"Qwen/Qwen2.5-7B-Instruct",
"Qwen/Qwen2.5-14B-Instruct",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-72B-Instruct",
],
"gemma2": [
"google/gemma-2-9b-it",
"google/gemma-2-27b-it",
],
"phi3": [
"microsoft/Phi-3-mini-4k-instruct",
"microsoft/Phi-3-medium-4k-instruct",
],
}
if architecture.lower() in known_bases:
return [{"model_id": m} for m in known_bases[architecture.lower()]]
# Fallback: search for popular instruct models
return search_models(
query=f"{architecture} instruct",
limit=5,
sort="downloads",
token=token,
)
|