File size: 15,347 Bytes
0249933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
"""Google Colab notebook generator for model merging, quantization, and deployment."""

import json
from typing import Optional
from .config_generator import MergeConfig, generate_yaml, MERGE_METHODS


def _cell(source: str, cell_type: str = "code") -> dict:
    """Create a notebook cell."""
    return {
        "cell_type": cell_type,
        "metadata": {},
        "source": source.split("\n"),
        "outputs": [] if cell_type == "code" else [],
        **({"execution_count": None} if cell_type == "code" else {}),
    }


def _md(text: str) -> dict:
    return _cell(text, "markdown")


def generate_merge_notebook(
    config: MergeConfig,
    output_model_name: str = "",
    hf_username: str = "",
    include_quantize: bool = True,
    include_deploy: bool = True,
    quant_types: Optional[list[str]] = None,
) -> dict:
    """Generate a complete Colab notebook for merging models.

    Args:
        config: MergeConfig with all merge parameters
        output_model_name: Name for the merged model (e.g., "My-Merged-7B")
        hf_username: HF username for upload (e.g., "AIencoder")
        include_quantize: Include GGUF quantization cells
        include_deploy: Include HF Space deployment cells
        quant_types: List of quantization types (default: ["Q5_K_M", "Q4_K_M"])

    Returns:
        Complete notebook dict (nbformat v4)
    """
    if quant_types is None:
        quant_types = ["Q5_K_M", "Q4_K_M"]

    if not output_model_name:
        output_model_name = "ForgeKit-Merged-Model"

    yaml_config = generate_yaml(config)
    method_info = MERGE_METHODS.get(config.method, {})

    # Estimate RAM for Colab runtime recommendation
    ram_note = ""
    if config.models:
        n_models = len(config.models)
        # Rough heuristic
        if any("14b" in m.lower() or "13b" in m.lower() for m in config.models):
            ram_note = "⚠️ 14B models need **High-RAM runtime** (48GB). Go to Runtime β†’ Change runtime β†’ High-RAM."
        elif any("70b" in m.lower() for m in config.models):
            ram_note = "⚠️ 70B models need **A100 GPU** (Colab Pro+). This won't work on free tier."
        elif any("7b" in m.lower() or "8b" in m.lower() for m in config.models):
            ram_note = "πŸ’‘ 7-8B models work on **High-RAM CPU** runtime (free tier). No GPU needed."

    cells = []

    # ===== HEADER =====
    cells.append(_md(f"""# πŸ”₯ ForgeKit β€” Model Merge Notebook

**Generated by [ForgeKit](https://huggingface.co/spaces/AIencoder/ForgeKit)**

This notebook will:
1. βœ… Install mergekit and dependencies
2. βœ… Merge your selected models using **{method_info.get('name', config.method)}**
3. {'βœ…' if include_quantize else '⬜'} Quantize to GGUF format
4. {'βœ…' if include_deploy else '⬜'} Upload to HuggingFace Hub

**Models being merged:**
{chr(10).join(f'- `{m}`' for m in config.models)}

**Method:** {method_info.get('name', config.method)} β€” {method_info.get('description', '')}

{ram_note}

---
⚑ **Quick Start:** Click **Runtime β†’ Run all** to execute everything."""))

    # ===== CELL 1: INSTALL =====
    cells.append(_md("## 1️⃣ Install Dependencies"))
    cells.append(_cell("""# Install mergekit and dependencies
!pip install -q mergekit[all] huggingface_hub transformers accelerate
!pip install -q pyyaml sentencepiece protobuf

print("βœ… All dependencies installed!")"""))

    # ===== CELL 2: HF LOGIN =====
    cells.append(_md("## 2️⃣ HuggingFace Login\nRequired for downloading gated models and uploading your merge."))
    cells.append(_cell("""from huggingface_hub import notebook_login
notebook_login()"""))

    # ===== CELL 3: CONFIG =====
    cells.append(_md(f"""## 3️⃣ Merge Configuration

Your merge config (auto-generated by ForgeKit). Edit the YAML below if you want to tweak weights or parameters."""))

    escaped_yaml = yaml_config.replace('"', '\\"')
    cells.append(_cell(f"""# === CONFIGURATION ===
MODEL_NAME = "{output_model_name}"
USERNAME = "{hf_username}"  # Change to your HF username

YAML_CONFIG = \"\"\"
{yaml_config}\"\"\"

# Display the config
print("πŸ“‹ Merge Configuration:")
print("=" * 50)
print(YAML_CONFIG)
print("=" * 50)
print(f"\\nπŸ“¦ Output: {{USERNAME}}/{{MODEL_NAME}}" if USERNAME else f"\\nπŸ“¦ Output: {{MODEL_NAME}}")"""))

    # ===== CELL 4: MERGE =====
    cells.append(_md("""## 4️⃣ Execute Merge

This is the main merge step. Time depends on model sizes:
| Size | Estimated Time |
|------|---------------|
| 1-3B | 5-15 min |
| 7B | 15-30 min |
| 14B | 30-60 min |"""))

    cells.append(_cell("""import yaml
import os
import time

# Write config to file
with open("merge_config.yaml", "w") as f:
    f.write(YAML_CONFIG)

# Create output directory
os.makedirs("merged_model", exist_ok=True)

print("πŸ”₯ Starting merge...")
print(f"   Method: {yaml.safe_load(YAML_CONFIG).get('merge_method', 'unknown')}")
print(f"   Models: {len(yaml.safe_load(YAML_CONFIG).get('models', []))}")
print()

start = time.time()

# Run mergekit
!mergekit-yaml merge_config.yaml merged_model --copy-tokenizer --allow-crimes --lazy-unpickle

elapsed = time.time() - start
print(f"\\nβœ… Merge complete in {elapsed/60:.1f} minutes!")
print(f"πŸ“ Output: ./merged_model/")

# Show output size
total = sum(
    os.path.getsize(os.path.join("merged_model", f))
    for f in os.listdir("merged_model")
    if os.path.isfile(os.path.join("merged_model", f))
)
print(f"πŸ’Ύ Total size: {total / (1024**3):.2f} GB")"""))

    # ===== CELL 5: TEST =====
    cells.append(_md("## 5️⃣ Quick Test\nVerify the merged model loads and generates text."))
    cells.append(_cell("""from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

print("πŸ§ͺ Loading merged model for testing...")

tokenizer = AutoTokenizer.from_pretrained("merged_model", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    "merged_model",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True,
)

# Test prompts
test_prompts = [
    "Write a Python function to calculate fibonacci numbers:",
    "Explain what machine learning is in simple terms:",
    "What is 15 * 23 + 7?",
]

print("\\n" + "=" * 60)
for prompt in test_prompts:
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    with torch.no_grad():
        output = model.generate(
            **inputs,
            max_new_tokens=100,
            do_sample=False,
            temperature=1.0,
        )
    response = tokenizer.decode(output[0], skip_special_tokens=True)
    print(f"\\nπŸ“ Prompt: {prompt}")
    print(f"πŸ€– Response: {response[len(prompt):].strip()[:200]}...")
    print("-" * 60)

print("\\nβœ… Model test complete!")

# Clean up GPU memory
del model
torch.cuda.empty_cache() if torch.cuda.is_available() else None"""))

    # ===== CELL 6: UPLOAD =====
    cells.append(_md("## 6️⃣ Upload to HuggingFace Hub"))

    model_card = _generate_model_card(config, output_model_name, hf_username)
    escaped_card = model_card.replace('"""', '\\"\\"\\"')

    cells.append(_cell(f"""from huggingface_hub import HfApi, create_repo

REPO_ID = f"{{USERNAME}}/{{MODEL_NAME}}" if USERNAME else MODEL_NAME

# Create repo
try:
    create_repo(REPO_ID, exist_ok=True, repo_type="model")
    print(f"πŸ“¦ Repo ready: https://huggingface.co/{{REPO_ID}}")
except Exception as e:
    print(f"⚠️ Repo creation: {{e}}")

# Write model card
MODEL_CARD = \"\"\"{model_card}\"\"\"

with open("merged_model/README.md", "w") as f:
    f.write(MODEL_CARD)

# Upload
api = HfApi()
print("⬆️ Uploading merged model (this may take a while)...")
api.upload_folder(
    repo_id=REPO_ID,
    folder_path="merged_model",
    commit_message=f"Upload {{MODEL_NAME}} merged with ForgeKit",
)
print(f"\\nβœ… Model uploaded!")
print(f"πŸ”— https://huggingface.co/{{REPO_ID}}")"""))

    # ===== CELL 7: QUANTIZE (optional) =====
    if include_quantize:
        cells.append(_md(f"""## 7️⃣ Quantize to GGUF

Convert to GGUF format for use with llama.cpp, Ollama, LM Studio, etc.

**Quantization types:** {', '.join(quant_types)}"""))

        quant_cmds = "\n".join(
            f'    !./llama.cpp/llama-quantize model-f16.gguf {output_model_name}-{q}.gguf {q}\n'
            f'    print(f"βœ… {q} done: {output_model_name}-{q}.gguf")'
            for q in quant_types
        )

        cells.append(_cell(f"""import os

print("πŸ“¦ Setting up llama.cpp for GGUF conversion...")

# Clone and build llama.cpp
if not os.path.exists("llama.cpp"):
    !git clone --depth 1 https://github.com/ggerganov/llama.cpp
    !cd llama.cpp && make -j$(nproc) llama-quantize

# Install conversion deps
!pip install -q gguf

# Convert to f16 GGUF first
print("\\nπŸ”„ Converting to GGUF (f16)...")
!python llama.cpp/convert_hf_to_gguf.py merged_model --outfile model-f16.gguf --outtype f16

# Quantize to each target
print("\\nπŸ—œοΈ Quantizing...")
if os.path.exists("model-f16.gguf"):
{quant_cmds}

    # Show file sizes
    print("\\nπŸ“Š Output sizes:")
    for f in os.listdir("."):
        if f.endswith(".gguf"):
            size_gb = os.path.getsize(f) / (1024**3)
            print(f"   {{f}}: {{size_gb:.2f}} GB")
else:
    print("❌ f16 conversion failed. Check errors above.")"""))

        # Upload GGUFs
        cells.append(_cell(f"""# Upload GGUF files to the same repo
import os
from huggingface_hub import HfApi

api = HfApi()
REPO_ID = f"{{USERNAME}}/{{MODEL_NAME}}" if USERNAME else MODEL_NAME

gguf_files = [f for f in os.listdir(".") if f.endswith(".gguf") and f != "model-f16.gguf"]

for gf in gguf_files:
    print(f"⬆️ Uploading {{gf}}...")
    api.upload_file(
        path_or_fileobj=gf,
        path_in_repo=gf,
        repo_id=REPO_ID,
    )
    print(f"   βœ… Done")

print(f"\\nπŸŽ‰ All GGUF files uploaded to https://huggingface.co/{{REPO_ID}}")"""))

    # ===== CELL 8: DEPLOY (optional) =====
    if include_deploy:
        cells.append(_md("""## 8️⃣ Deploy to HuggingFace Space

Create a Gradio chat Space running your merged model."""))

        cells.append(_cell(f"""from huggingface_hub import HfApi, create_repo

SPACE_ID = f"{{USERNAME}}/{{MODEL_NAME}}-chat" if USERNAME else f"{{MODEL_NAME}}-chat"
REPO_ID = f"{{USERNAME}}/{{MODEL_NAME}}" if USERNAME else MODEL_NAME

# Create Space
try:
    create_repo(SPACE_ID, repo_type="space", space_sdk="gradio", exist_ok=True)
    print(f"πŸš€ Space created: https://huggingface.co/spaces/{{SPACE_ID}}")
except Exception as e:
    print(f"⚠️ {{e}}")

# Generate app.py
APP_CODE = '''import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import torch
from threading import Thread

MODEL_ID = "{hf_username}/{output_model_name}" if "{hf_username}" else "{output_model_name}"

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True
)

def chat(message, history):
    messages = []
    for h in history:
        messages.append({{"role": "user", "content": h[0]}})
        if h[1]:
            messages.append({{"role": "assistant", "content": h[1]}})
    messages.append({{"role": "user", "content": message}})

    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer(text, return_tensors="pt").to(model.device)
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    thread = Thread(target=model.generate, kwargs={{
        **inputs, "max_new_tokens": 512, "streamer": streamer, "do_sample": True, "temperature": 0.7
    }})
    thread.start()

    response = ""
    for token in streamer:
        response += token
        yield response

demo = gr.ChatInterface(chat, title="πŸ”₯ {output_model_name}", description="Merged with ForgeKit")
demo.launch()
'''

api = HfApi()

# Upload app.py
api.upload_file(
    path_or_fileobj=APP_CODE.encode(),
    path_in_repo="app.py",
    repo_id=SPACE_ID,
    repo_type="space",
)

# Upload requirements.txt
reqs = "transformers\\ntorch\\naccelerate\\nsentencepiece\\nprotobuf"
api.upload_file(
    path_or_fileobj=reqs.encode(),
    path_in_repo="requirements.txt",
    repo_id=SPACE_ID,
    repo_type="space",
)

print(f"\\nπŸŽ‰ Space deployed!")
print(f"πŸ”— https://huggingface.co/spaces/{{SPACE_ID}}")
print(f"\\n⏳ It may take a few minutes to build and start.")"""))

    # ===== DONE =====
    cells.append(_md(f"""## πŸŽ‰ All Done!

Your merged model **{output_model_name}** is ready. Here's what was created:

| Output | Link |
|--------|------|
| Model | `https://huggingface.co/{hf_username or 'YOUR_USERNAME'}/{output_model_name}` |
{'| GGUF Files | Same repo (quantized versions) |' if include_quantize else ''}
{'| Chat Space | `https://huggingface.co/spaces/' + (hf_username or 'YOUR_USERNAME') + '/' + output_model_name + '-chat` |' if include_deploy else ''}

---

**Made with [ForgeKit](https://huggingface.co/spaces/AIencoder/ForgeKit)** β€” Forge your perfect AI model πŸ”₯"""))

    # ===== BUILD NOTEBOOK =====
    notebook = {
        "nbformat": 4,
        "nbformat_minor": 5,
        "metadata": {
            "kernelspec": {
                "display_name": "Python 3",
                "language": "python",
                "name": "python3",
            },
            "language_info": {"name": "python", "version": "3.10.0"},
            "colab": {
                "provenance": [],
                "gpuType": "T4",
            },
            "accelerator": "GPU",
        },
        "cells": cells,
    }

    return notebook


def _generate_model_card(config: MergeConfig, name: str, username: str) -> str:
    """Generate a model card README.md for the merged model."""
    method_info = MERGE_METHODS.get(config.method, {})
    models_list = "\n".join(f"- [{m}](https://huggingface.co/{m})" for m in config.models)
    base_link = f"[{config.base_model}](https://huggingface.co/{config.base_model})" if config.base_model else "N/A"

    return f"""---
tags:
- merge
- mergekit
- forgekit
base_model: {config.base_model or config.models[0] if config.models else ''}
license: apache-2.0
---

# {name}

This model was created using **[ForgeKit](https://huggingface.co/spaces/AIencoder/ForgeKit)** β€” an open-source model merging platform.

## Merge Details

| Parameter | Value |
|-----------|-------|
| **Method** | {method_info.get('name', config.method)} |
| **Base Model** | {base_link} |
| **dtype** | {config.dtype} |

### Source Models

{models_list}

### Configuration

```yaml
{generate_yaml(config)}
```

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("{username}/{name}" if "{username}" else "{name}")
model = AutoModelForCausalLM.from_pretrained("{username}/{name}" if "{username}" else "{name}")
```

---

*Made with [ForgeKit](https://huggingface.co/spaces/AIencoder/ForgeKit)* πŸ”₯
"""


def notebook_to_json(notebook: dict) -> str:
    """Serialize notebook to JSON string."""
    return json.dumps(notebook, indent=2, ensure_ascii=False)


def save_notebook(notebook: dict, path: str):
    """Save notebook to .ipynb file."""
    with open(path, "w", encoding="utf-8") as f:
        json.dump(notebook, f, indent=2, ensure_ascii=False)