Commit
·
7382f7a
0
Parent(s):
Initial commit with LFS for model file
Browse files- .gitattributes +1 -0
- .gitignore +44 -0
- app.py +277 -0
- exoplanet_detector.joblib +3 -0
- mapping.py +381 -0
- requirements.txt +7 -0
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Environment variables
|
| 2 |
+
.env
|
| 3 |
+
.env.local
|
| 4 |
+
.env.*.local
|
| 5 |
+
|
| 6 |
+
# Python cache
|
| 7 |
+
__pycache__/
|
| 8 |
+
*.py[cod]
|
| 9 |
+
*$py.class
|
| 10 |
+
*.so
|
| 11 |
+
|
| 12 |
+
# Distribution / packaging
|
| 13 |
+
.Python
|
| 14 |
+
build/
|
| 15 |
+
develop-eggs/
|
| 16 |
+
dist/
|
| 17 |
+
downloads/
|
| 18 |
+
eggs/
|
| 19 |
+
.eggs/
|
| 20 |
+
lib/
|
| 21 |
+
lib64/
|
| 22 |
+
parts/
|
| 23 |
+
sdist/
|
| 24 |
+
var/
|
| 25 |
+
wheels/
|
| 26 |
+
*.egg-info/
|
| 27 |
+
.installed.cfg
|
| 28 |
+
*.egg
|
| 29 |
+
|
| 30 |
+
# Virtual environments
|
| 31 |
+
venv/
|
| 32 |
+
ENV/
|
| 33 |
+
env/
|
| 34 |
+
|
| 35 |
+
# IDE
|
| 36 |
+
.vscode/
|
| 37 |
+
.idea/
|
| 38 |
+
*.swp
|
| 39 |
+
*.swo
|
| 40 |
+
*~
|
| 41 |
+
|
| 42 |
+
# OS
|
| 43 |
+
.DS_Store
|
| 44 |
+
Thumbs.db
|
app.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio UI для предсказания экзопланет
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import joblib
|
| 8 |
+
import os
|
| 9 |
+
import time
|
| 10 |
+
from mapping import ColumnMapper, load_training_columns
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
|
| 13 |
+
# Загружаем переменные окружения из .env файла
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
+
# Константы
|
| 17 |
+
TRAINING_CSV_PATH = "cumulative_2025.10.03_08.34.41.csv"
|
| 18 |
+
MODEL_PATH = "exoplanet_detector.joblib"
|
| 19 |
+
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY", "")
|
| 20 |
+
|
| 21 |
+
# Загружаем модель и колонки тренировочного датасета
|
| 22 |
+
model = joblib.load(MODEL_PATH)
|
| 23 |
+
training_columns = load_training_columns(TRAINING_CSV_PATH)
|
| 24 |
+
|
| 25 |
+
# Инициализируем маппер
|
| 26 |
+
mapper = ColumnMapper(api_key=TOGETHER_API_KEY)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def predict_exoplanets(uploaded_file):
|
| 30 |
+
"""
|
| 31 |
+
Process uploaded file and return predictions
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
uploaded_file: Uploaded CSV file
|
| 35 |
+
|
| 36 |
+
Returns:
|
| 37 |
+
Tuple (results, mapping info, statistics)
|
| 38 |
+
"""
|
| 39 |
+
start_time = time.time()
|
| 40 |
+
|
| 41 |
+
try:
|
| 42 |
+
# Load dataset
|
| 43 |
+
if uploaded_file is None:
|
| 44 |
+
return None, "Error: Please upload a CSV file", None
|
| 45 |
+
|
| 46 |
+
# Read uploaded file
|
| 47 |
+
df_uploaded = pd.read_csv(uploaded_file.name, comment='#')
|
| 48 |
+
|
| 49 |
+
info_msg = f"Loaded rows: {len(df_uploaded)}\n"
|
| 50 |
+
info_msg += f"Columns in uploaded dataset: {len(df_uploaded.columns)}\n\n"
|
| 51 |
+
|
| 52 |
+
# Apply column mapping
|
| 53 |
+
mapping_start = time.time()
|
| 54 |
+
info_msg += "Performing column mapping via Llama...\n\n"
|
| 55 |
+
|
| 56 |
+
df_mapped, mapping, mapping_info = mapper.map_dataset(df_uploaded, training_columns)
|
| 57 |
+
|
| 58 |
+
mapping_time = time.time() - mapping_start
|
| 59 |
+
info_msg += mapping_info + "\n"
|
| 60 |
+
info_msg += f"Mapping time: {mapping_time:.2f} sec\n\n"
|
| 61 |
+
|
| 62 |
+
# Get features expected by the model
|
| 63 |
+
try:
|
| 64 |
+
expected_features = list(model.feature_names_in_)
|
| 65 |
+
info_msg += f"Model expects {len(expected_features)} features\n\n"
|
| 66 |
+
except AttributeError:
|
| 67 |
+
# If feature_names_in_ is not available, use all columns except targets
|
| 68 |
+
target_cols = ['koi_disposition', 'koi_pdisposition']
|
| 69 |
+
expected_features = [col for col in training_columns if col not in target_cols]
|
| 70 |
+
info_msg += f"Using {len(expected_features)} features from training dataset\n\n"
|
| 71 |
+
|
| 72 |
+
# Prepare X with correct columns
|
| 73 |
+
info_msg += f"Creating DataFrame with {len(expected_features)} columns...\n"
|
| 74 |
+
|
| 75 |
+
# Create empty DataFrame with correct columns
|
| 76 |
+
X = pd.DataFrame(index=df_mapped.index, columns=expected_features)
|
| 77 |
+
|
| 78 |
+
# Fill columns that exist in df_mapped
|
| 79 |
+
for col in expected_features:
|
| 80 |
+
if col in df_mapped.columns:
|
| 81 |
+
X[col] = df_mapped[col].values
|
| 82 |
+
else:
|
| 83 |
+
X[col] = 0.0 # Fill missing columns with zeros
|
| 84 |
+
|
| 85 |
+
# Convert all columns to numeric format
|
| 86 |
+
X = X.apply(pd.to_numeric, errors='coerce')
|
| 87 |
+
|
| 88 |
+
# Calculate statistics
|
| 89 |
+
available_cols = [col for col in expected_features if col in df_mapped.columns]
|
| 90 |
+
missing_cols = [col for col in expected_features if col not in df_mapped.columns]
|
| 91 |
+
|
| 92 |
+
if missing_cols:
|
| 93 |
+
info_msg += f"Warning: {len(missing_cols)} columns missing (filled with zeros)\n"
|
| 94 |
+
|
| 95 |
+
info_msg += f"DEBUG: X.shape = {X.shape}, expected: ({len(df_mapped)}, {len(expected_features)})\n"
|
| 96 |
+
|
| 97 |
+
# Fill NaN with mean values
|
| 98 |
+
X = X.fillna(X.mean().fillna(0))
|
| 99 |
+
|
| 100 |
+
info_msg += f"DEBUG: After fillna X.shape = {X.shape}\n"
|
| 101 |
+
|
| 102 |
+
info_msg += f"Data processing: {X.shape}\n"
|
| 103 |
+
info_msg += f" Filled: {len(available_cols)} columns, Added zeros: {len(missing_cols)}\n"
|
| 104 |
+
info_msg += f"Data prepared for model\n\n"
|
| 105 |
+
|
| 106 |
+
# Make predictions
|
| 107 |
+
pred_start = time.time()
|
| 108 |
+
|
| 109 |
+
# Use numpy array instead of DataFrame to bypass feature name checks
|
| 110 |
+
X_values = X.values # Convert to numpy array
|
| 111 |
+
|
| 112 |
+
info_msg += f"DEBUG: X_values.shape = {X_values.shape}\n\n"
|
| 113 |
+
|
| 114 |
+
predictions = model.predict(X_values)
|
| 115 |
+
predictions_proba = model.predict_proba(X_values)
|
| 116 |
+
pred_time = time.time() - pred_start
|
| 117 |
+
|
| 118 |
+
info_msg += f"Predictions completed: {len(predictions)} objects in {pred_time:.2f} sec\n"
|
| 119 |
+
|
| 120 |
+
# Create result dataframe
|
| 121 |
+
df_result = df_uploaded.copy()
|
| 122 |
+
|
| 123 |
+
# Get unique classes from model
|
| 124 |
+
classes = model.classes_
|
| 125 |
+
info_msg += f" Found classes: {list(classes)}\n\n"
|
| 126 |
+
|
| 127 |
+
# Add predictions (text labels)
|
| 128 |
+
df_result['prediction'] = predictions
|
| 129 |
+
|
| 130 |
+
# Add probabilities for each class
|
| 131 |
+
for i, class_name in enumerate(classes):
|
| 132 |
+
df_result[f'confidence_{class_name.replace(" ", "_").lower()}'] = predictions_proba[:, i]
|
| 133 |
+
|
| 134 |
+
# Add mapping information as separate columns
|
| 135 |
+
if mapping:
|
| 136 |
+
for src_col, tgt_col in mapping.items():
|
| 137 |
+
if src_col in df_uploaded.columns and tgt_col in df_mapped.columns:
|
| 138 |
+
df_result[f'mapped_as_{tgt_col}'] = df_uploaded[src_col]
|
| 139 |
+
|
| 140 |
+
# Создаем упрощенный вывод с только важными колонками для отображения
|
| 141 |
+
# Выбираем колонки предсказаний
|
| 142 |
+
display_columns = ['prediction']
|
| 143 |
+
for class_name in classes:
|
| 144 |
+
col_name = f'confidence_{class_name.replace(" ", "_").lower()}'
|
| 145 |
+
if col_name in df_result.columns:
|
| 146 |
+
display_columns.append(col_name)
|
| 147 |
+
|
| 148 |
+
# Add mapped columns (if any)
|
| 149 |
+
mapped_cols = [col for col in df_result.columns if col.startswith('mapped_as_')]
|
| 150 |
+
display_columns.extend(mapped_cols[:10]) # Show first 10 mapped columns
|
| 151 |
+
|
| 152 |
+
# If no mapped columns, add first 5 original columns
|
| 153 |
+
if not mapped_cols and len(df_uploaded.columns) > 0:
|
| 154 |
+
original_cols = [col for col in df_uploaded.columns[:5] if col in df_result.columns]
|
| 155 |
+
display_columns.extend(original_cols)
|
| 156 |
+
|
| 157 |
+
# Create dataframe for display
|
| 158 |
+
df_display = df_result[display_columns].copy()
|
| 159 |
+
|
| 160 |
+
total_time = time.time() - start_time
|
| 161 |
+
|
| 162 |
+
# Create statistics by class
|
| 163 |
+
from collections import Counter
|
| 164 |
+
pred_counts = Counter(predictions)
|
| 165 |
+
|
| 166 |
+
stats_lines = ["**Prediction Statistics:**\n"]
|
| 167 |
+
stats_lines.append(f"* Total objects: {len(predictions)}\n")
|
| 168 |
+
|
| 169 |
+
for class_name in classes:
|
| 170 |
+
count = pred_counts.get(class_name, 0)
|
| 171 |
+
pct = count / len(predictions) * 100 if len(predictions) > 0 else 0
|
| 172 |
+
stats_lines.append(f"* {class_name}: {count} ({pct:.1f}%)\n")
|
| 173 |
+
|
| 174 |
+
stats_lines.append(f"\n**Processing time:** {total_time:.2f} seconds\n")
|
| 175 |
+
stats_lines.append(f"\n**Columns in result:**\n")
|
| 176 |
+
stats_lines.append(f"* All original columns from uploaded file (with original names)\n")
|
| 177 |
+
stats_lines.append(f"* `prediction`: Predicted class ({', '.join(classes)})\n")
|
| 178 |
+
|
| 179 |
+
for class_name in classes:
|
| 180 |
+
col_name = f'confidence_{class_name.replace(" ", "_").lower()}'
|
| 181 |
+
stats_lines.append(f"* `{col_name}`: Probability of class {class_name}\n")
|
| 182 |
+
|
| 183 |
+
stats_lines.append(f"* Columns `mapped_as_*`: Duplicate mapped columns for reference\n")
|
| 184 |
+
stats_lines.append(f"\n**Total columns in result:** {len(df_result.columns)}\n")
|
| 185 |
+
|
| 186 |
+
stats = "".join(stats_lines) + f"""
|
| 187 |
+
|
| 188 |
+
**Mapping completed:** {len(mapping)} columns renamed for model
|
| 189 |
+
|
| 190 |
+
**Full dataset saved:** All {len(df_result.columns)} columns available for download
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
# Save full result to temporary file for download
|
| 194 |
+
output_file = "predictions_result.csv"
|
| 195 |
+
df_result.to_csv(output_file, index=False)
|
| 196 |
+
|
| 197 |
+
# Return simplified output for display and path to full file
|
| 198 |
+
return df_display, info_msg, stats, output_file
|
| 199 |
+
|
| 200 |
+
except Exception as e:
|
| 201 |
+
error_msg = f"Error processing file:\n{str(e)}"
|
| 202 |
+
import traceback
|
| 203 |
+
error_msg += f"\n\n{traceback.format_exc()}"
|
| 204 |
+
return None, error_msg, None, None
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
# Create Gradio interface
|
| 208 |
+
with gr.Blocks(title="Exoplanet Detector", theme=gr.themes.Soft()) as demo:
|
| 209 |
+
gr.Markdown("""
|
| 210 |
+
# Exoplanet Detector
|
| 211 |
+
|
| 212 |
+
Upload a CSV file with data about exoplanet candidates (KOI - Kepler Objects of Interest).
|
| 213 |
+
|
| 214 |
+
**How it works:**
|
| 215 |
+
1. Upload your dataset with any column structure
|
| 216 |
+
2. Llama automatically maps your columns to training columns
|
| 217 |
+
3. Model makes predictions: exoplanet or false positive
|
| 218 |
+
|
| 219 |
+
**Model:** Random Forest Classifier
|
| 220 |
+
**Mapping:** Llama 3.3 70B via Together AI
|
| 221 |
+
|
| 222 |
+
**Note:** Processing large datasets (>1000 rows) may take several minutes.
|
| 223 |
+
""")
|
| 224 |
+
|
| 225 |
+
with gr.Row():
|
| 226 |
+
with gr.Column(scale=1):
|
| 227 |
+
file_input = gr.File(
|
| 228 |
+
label="Upload CSV file",
|
| 229 |
+
file_types=[".csv"],
|
| 230 |
+
type="filepath"
|
| 231 |
+
)
|
| 232 |
+
submit_btn = gr.Button("Run Prediction", variant="primary", size="lg")
|
| 233 |
+
|
| 234 |
+
with gr.Column(scale=2):
|
| 235 |
+
mapping_info = gr.Textbox(
|
| 236 |
+
label="Column Mapping Information",
|
| 237 |
+
lines=15,
|
| 238 |
+
max_lines=20
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
with gr.Row():
|
| 242 |
+
stats_output = gr.Markdown(label="Statistics")
|
| 243 |
+
|
| 244 |
+
with gr.Row():
|
| 245 |
+
results_output = gr.Dataframe(
|
| 246 |
+
label="Prediction Results (main columns)",
|
| 247 |
+
wrap=True,
|
| 248 |
+
interactive=False
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
with gr.Row():
|
| 252 |
+
download_output = gr.File(
|
| 253 |
+
label="Download full result with all columns",
|
| 254 |
+
interactive=False
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# Event handler
|
| 258 |
+
submit_btn.click(
|
| 259 |
+
fn=predict_exoplanets,
|
| 260 |
+
inputs=[file_input],
|
| 261 |
+
outputs=[results_output, mapping_info, stats_output, download_output]
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
gr.Markdown("""
|
| 265 |
+
---
|
| 266 |
+
### Tips:
|
| 267 |
+
- Make sure your CSV file contains data about stellar systems and their characteristics
|
| 268 |
+
- The more columns match the training dataset, the more accurate the predictions will be
|
| 269 |
+
- Model trained on NASA Exoplanet Archive data (Kepler Mission)
|
| 270 |
+
|
| 271 |
+
### Example training dataset columns:
|
| 272 |
+
`koi_period`, `koi_depth`, `koi_prad`, `koi_teq`, `koi_insol`, `koi_steff`, `koi_slogg`, `koi_srad`, `ra`, `dec`, `koi_kepmag` etc.
|
| 273 |
+
""")
|
| 274 |
+
|
| 275 |
+
# Launch application
|
| 276 |
+
if __name__ == "__main__":
|
| 277 |
+
demo.launch(share=False, server_name="0.0.0.0", server_port=7860)
|
exoplanet_detector.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a4c9ae4d4bb2830473d74b4fd806ba9545785797e895027504c7cf0085fed11d
|
| 3 |
+
size 6900161
|
mapping.py
ADDED
|
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Модуль для маппинга колонок загруженного датасета на колонки тренировочного датасета
|
| 3 |
+
используя Llama через Together API
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import os
|
| 8 |
+
import re
|
| 9 |
+
from together import Together
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def convert_coordinates_to_degrees(value):
|
| 13 |
+
"""
|
| 14 |
+
Конвертирует координаты из формата HMS/DMS в градусы
|
| 15 |
+
Примеры: '07h29m25.85s' -> 112.357708 degrees
|
| 16 |
+
'45d30m15.5s' -> 45.504306 degrees
|
| 17 |
+
"""
|
| 18 |
+
if pd.isna(value) or isinstance(value, (int, float)):
|
| 19 |
+
return value
|
| 20 |
+
|
| 21 |
+
value_str = str(value).strip()
|
| 22 |
+
|
| 23 |
+
# Формат HMS (часы:минуты:секунды) для RA
|
| 24 |
+
hms_match = re.match(r'(\d+)h(\d+)m([\d.]+)s?', value_str)
|
| 25 |
+
if hms_match:
|
| 26 |
+
hours = float(hms_match.group(1))
|
| 27 |
+
minutes = float(hms_match.group(2))
|
| 28 |
+
seconds = float(hms_match.group(3))
|
| 29 |
+
return hours * 15 + minutes * 0.25 + seconds * 0.00416667 # 1h = 15°, 1m = 0.25°, 1s = 0.00416667°
|
| 30 |
+
|
| 31 |
+
# Формат DMS (градусы:минуты:секунды) для DEC
|
| 32 |
+
dms_match = re.match(r'([+-]?)(\d+)d(\d+)m([\d.]+)s?', value_str)
|
| 33 |
+
if dms_match:
|
| 34 |
+
sign = -1 if dms_match.group(1) == '-' else 1
|
| 35 |
+
degrees = float(dms_match.group(2))
|
| 36 |
+
minutes = float(dms_match.group(3))
|
| 37 |
+
seconds = float(dms_match.group(4))
|
| 38 |
+
return sign * (degrees + minutes / 60 + seconds / 3600)
|
| 39 |
+
|
| 40 |
+
# Если не распознали формат, возвращаем NaN
|
| 41 |
+
return float('nan')
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class ColumnMapper:
|
| 45 |
+
def __init__(self, api_key: str):
|
| 46 |
+
"""
|
| 47 |
+
Initialize column mapper
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
api_key: API key for Together AI
|
| 51 |
+
"""
|
| 52 |
+
self.client = Together(api_key=api_key)
|
| 53 |
+
|
| 54 |
+
# Built-in synonym dictionary (fallback) - significantly expanded
|
| 55 |
+
self.known_synonyms = {
|
| 56 |
+
# Orbital period
|
| 57 |
+
'pl_orbper': 'koi_period',
|
| 58 |
+
'orbital_period': 'koi_period',
|
| 59 |
+
'period': 'koi_period',
|
| 60 |
+
'pl_orbpererr1': 'koi_period_err1',
|
| 61 |
+
'pl_orbpererr2': 'koi_period_err2',
|
| 62 |
+
'pl_orbpererr': 'koi_period_err1',
|
| 63 |
+
|
| 64 |
+
# Transit time/epoch
|
| 65 |
+
'pl_tranmid': 'koi_time0bk',
|
| 66 |
+
'transit_time': 'koi_time0bk',
|
| 67 |
+
'time0': 'koi_time0bk',
|
| 68 |
+
'epoch': 'koi_time0bk',
|
| 69 |
+
'pl_tranmiderr1': 'koi_time0bk_err1',
|
| 70 |
+
'pl_tranmiderr2': 'koi_time0bk_err2',
|
| 71 |
+
|
| 72 |
+
# Transit duration
|
| 73 |
+
'pl_trandur': 'koi_duration',
|
| 74 |
+
'pl_trandurh': 'koi_duration',
|
| 75 |
+
'transit_duration': 'koi_duration',
|
| 76 |
+
'duration': 'koi_duration',
|
| 77 |
+
'pl_trandurerr1': 'koi_duration_err1',
|
| 78 |
+
'pl_trandurerr2': 'koi_duration_err2',
|
| 79 |
+
|
| 80 |
+
# Transit depth
|
| 81 |
+
'pl_trandep': 'koi_depth',
|
| 82 |
+
'transit_depth': 'koi_depth',
|
| 83 |
+
'depth': 'koi_depth',
|
| 84 |
+
'pl_trandeperr1': 'koi_depth_err1',
|
| 85 |
+
'pl_trandeperr2': 'koi_depth_err2',
|
| 86 |
+
|
| 87 |
+
# Planet radius
|
| 88 |
+
'pl_rade': 'koi_prad',
|
| 89 |
+
'pl_radj': 'koi_prad',
|
| 90 |
+
'planet_radius': 'koi_prad',
|
| 91 |
+
'radius': 'koi_prad',
|
| 92 |
+
'pl_radeerr1': 'koi_prad_err1',
|
| 93 |
+
'pl_radeerr2': 'koi_prad_err2',
|
| 94 |
+
'pl_radjerr1': 'koi_prad_err1',
|
| 95 |
+
'pl_radjerr2': 'koi_prad_err2',
|
| 96 |
+
|
| 97 |
+
# Insolation flux
|
| 98 |
+
'pl_insol': 'koi_insol',
|
| 99 |
+
'insolation': 'koi_insol',
|
| 100 |
+
'insol': 'koi_insol',
|
| 101 |
+
'pl_insolerr1': 'koi_insol_err1',
|
| 102 |
+
'pl_insolerr2': 'koi_insol_err2',
|
| 103 |
+
|
| 104 |
+
# Equilibrium temperature
|
| 105 |
+
'pl_eqt': 'koi_teq',
|
| 106 |
+
'equilibrium_temp': 'koi_teq',
|
| 107 |
+
'teq': 'koi_teq',
|
| 108 |
+
'pl_eqterr1': 'koi_teq_err1',
|
| 109 |
+
'pl_eqterr2': 'koi_teq_err2',
|
| 110 |
+
|
| 111 |
+
# Stellar effective temperature
|
| 112 |
+
'st_teff': 'koi_steff',
|
| 113 |
+
'stellar_teff': 'koi_steff',
|
| 114 |
+
'star_temp': 'koi_steff',
|
| 115 |
+
'teff': 'koi_steff',
|
| 116 |
+
'st_tefferr1': 'koi_steff_err1',
|
| 117 |
+
'st_tefferr2': 'koi_steff_err2',
|
| 118 |
+
|
| 119 |
+
# Stellar surface gravity
|
| 120 |
+
'st_logg': 'koi_slogg',
|
| 121 |
+
'stellar_logg': 'koi_slogg',
|
| 122 |
+
'surface_gravity': 'koi_slogg',
|
| 123 |
+
'logg': 'koi_slogg',
|
| 124 |
+
'st_loggerr1': 'koi_slogg_err1',
|
| 125 |
+
'st_loggerr2': 'koi_slogg_err2',
|
| 126 |
+
|
| 127 |
+
# Stellar radius
|
| 128 |
+
'st_rad': 'koi_srad',
|
| 129 |
+
'stellar_radius': 'koi_srad',
|
| 130 |
+
'star_radius': 'koi_srad',
|
| 131 |
+
'st_raderr1': 'koi_srad_err1',
|
| 132 |
+
'st_raderr2': 'koi_srad_err2',
|
| 133 |
+
|
| 134 |
+
# Stellar mass
|
| 135 |
+
'st_mass': 'koi_smass',
|
| 136 |
+
'stellar_mass': 'koi_smass',
|
| 137 |
+
'st_masserr1': 'koi_smass_err1',
|
| 138 |
+
'st_masserr2': 'koi_smass_err2',
|
| 139 |
+
|
| 140 |
+
# Kepler magnitude
|
| 141 |
+
'sy_kepmag': 'koi_kepmag',
|
| 142 |
+
'kepmag': 'koi_kepmag',
|
| 143 |
+
'kep_mag': 'koi_kepmag',
|
| 144 |
+
'sy_kepmaglim': 'koi_kepmag',
|
| 145 |
+
|
| 146 |
+
# Coordinates
|
| 147 |
+
'ra': 'ra',
|
| 148 |
+
'ra_deg': 'ra',
|
| 149 |
+
'rastr': 'ra',
|
| 150 |
+
'dec': 'dec',
|
| 151 |
+
'dec_deg': 'dec',
|
| 152 |
+
'decstr': 'dec',
|
| 153 |
+
|
| 154 |
+
# Model SNR
|
| 155 |
+
'koi_model_snr': 'koi_model_snr',
|
| 156 |
+
'snr': 'koi_model_snr',
|
| 157 |
+
|
| 158 |
+
# Impact parameter
|
| 159 |
+
'pl_imppar': 'koi_impact',
|
| 160 |
+
'impact': 'koi_impact',
|
| 161 |
+
'impact_parameter': 'koi_impact',
|
| 162 |
+
|
| 163 |
+
# Additional mappings for error columns
|
| 164 |
+
'koi_period_err': 'koi_period_err1',
|
| 165 |
+
'koi_time0bk_err': 'koi_time0bk_err1',
|
| 166 |
+
'koi_duration_err': 'koi_duration_err1',
|
| 167 |
+
'koi_depth_err': 'koi_depth_err1',
|
| 168 |
+
'koi_prad_err': 'koi_prad_err1',
|
| 169 |
+
'koi_teq_err': 'koi_teq_err1',
|
| 170 |
+
'koi_insol_err': 'koi_insol_err1',
|
| 171 |
+
'koi_steff_err': 'koi_steff_err1',
|
| 172 |
+
'koi_slogg_err': 'koi_slogg_err1',
|
| 173 |
+
'koi_srad_err': 'koi_srad_err1',
|
| 174 |
+
'koi_smass_err': 'koi_smass_err1',
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
def get_column_mapping(self, source_columns: list, target_columns: list) -> dict:
|
| 178 |
+
"""
|
| 179 |
+
Получает маппинг между колонками источника и целевыми колонками
|
| 180 |
+
используя LLM
|
| 181 |
+
|
| 182 |
+
Args:
|
| 183 |
+
source_columns: Список колонок загруженного датасета
|
| 184 |
+
target_columns: Список колонок тренировочного датасета
|
| 185 |
+
|
| 186 |
+
Returns:
|
| 187 |
+
Словарь маппинга {source_column: target_column}
|
| 188 |
+
"""
|
| 189 |
+
# Словарь известных синонимов для точного маппинга
|
| 190 |
+
known_mappings = """
|
| 191 |
+
Common column name mappings (NASA Exoplanet Archive):
|
| 192 |
+
- pl_orbper, orbital_period, period → koi_period (Orbital Period in days)
|
| 193 |
+
- pl_tranmid, transit_time, time0 → koi_time0bk (Transit Epoch in BJD)
|
| 194 |
+
- pl_trandur, pl_trandurh, transit_duration → koi_duration (Transit Duration in hours)
|
| 195 |
+
- pl_trandep, transit_depth, depth → koi_depth (Transit Depth in ppm)
|
| 196 |
+
- pl_rade, planet_radius, radius → koi_prad (Planetary Radius in Earth radii)
|
| 197 |
+
- pl_insol, insolation, insol → koi_insol (Insolation Flux in Earth flux)
|
| 198 |
+
- pl_eqt, equilibrium_temp, teq → koi_teq (Equilibrium Temperature in K)
|
| 199 |
+
- st_teff, stellar_teff, star_temp → koi_steff (Stellar Effective Temperature in K)
|
| 200 |
+
- st_logg, stellar_logg, surface_gravity → koi_slogg (Stellar Surface Gravity in log10(cm/s^2))
|
| 201 |
+
- st_rad, stellar_radius, star_radius → koi_srad (Stellar Radius in Solar radii)
|
| 202 |
+
- st_mass, stellar_mass, star_mass → koi_smass (Stellar Mass in Solar masses)
|
| 203 |
+
- ra, ra_deg → ra (Right Ascension in degrees)
|
| 204 |
+
- dec, dec_deg → dec (Declination in degrees)
|
| 205 |
+
- pl_bmassj, planet_mass → koi_prad (use radius if mass not available)
|
| 206 |
+
- sy_dist, distance → koi_steff (stellar distance - related to stellar properties)
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
prompt = f"""You are an expert in NASA Exoplanet Archive data mapping. Map column names from a source dataset to Kepler/KOI target dataset columns.
|
| 210 |
+
|
| 211 |
+
{known_mappings}
|
| 212 |
+
|
| 213 |
+
Source columns:
|
| 214 |
+
{source_columns}
|
| 215 |
+
|
| 216 |
+
Target columns:
|
| 217 |
+
{target_columns}
|
| 218 |
+
|
| 219 |
+
CRITICAL INSTRUCTIONS:
|
| 220 |
+
1. Use the known mappings above as your PRIMARY reference
|
| 221 |
+
2. Match columns based on physical meaning (e.g., "pl_orbper" = orbital period = "koi_period")
|
| 222 |
+
3. Common prefixes: "pl_" = planet property, "st_" = stellar property, "koi_" = KOI property
|
| 223 |
+
4. If exact match exists in known mappings, USE IT
|
| 224 |
+
5. Only map columns with clear semantic similarity
|
| 225 |
+
6. Return ONLY a Python dictionary: {{"source": "target", ...}}
|
| 226 |
+
7. NO markdown, NO explanations, NO code blocks - just the dictionary
|
| 227 |
+
|
| 228 |
+
Example: {{"pl_orbper": "koi_period", "st_teff": "koi_steff", "ra": "ra"}}
|
| 229 |
+
|
| 230 |
+
Mapping:"""
|
| 231 |
+
|
| 232 |
+
response = self.client.chat.completions.create(
|
| 233 |
+
model="meta-llama/Llama-3.3-70B-Instruct-Turbo",
|
| 234 |
+
messages=[{"role": "user", "content": prompt}],
|
| 235 |
+
temperature=0.1,
|
| 236 |
+
max_tokens=2000
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
mapping_str = response.choices[0].message.content.strip()
|
| 240 |
+
|
| 241 |
+
# Очистка ответа от возможных markdown блоков
|
| 242 |
+
if "```" in mapping_str:
|
| 243 |
+
mapping_str = mapping_str.split("```")[1]
|
| 244 |
+
if mapping_str.startswith("python"):
|
| 245 |
+
mapping_str = mapping_str[6:]
|
| 246 |
+
mapping_str = mapping_str.strip()
|
| 247 |
+
|
| 248 |
+
# Преобразование строки в словарь
|
| 249 |
+
try:
|
| 250 |
+
mapping = eval(mapping_str)
|
| 251 |
+
if not isinstance(mapping, dict):
|
| 252 |
+
raise ValueError("Response is not a dictionary")
|
| 253 |
+
except Exception as e:
|
| 254 |
+
print(f"Error parsing mapping: {e}")
|
| 255 |
+
print(f"Raw response: {mapping_str}")
|
| 256 |
+
# Возвращаем пустой маппинг в случае ошибки
|
| 257 |
+
mapping = {}
|
| 258 |
+
|
| 259 |
+
# Supplement mapping with known synonyms (fallback)
|
| 260 |
+
# Check source columns that were not mapped by Llama
|
| 261 |
+
unmapped_sources = [col for col in source_columns if col not in mapping]
|
| 262 |
+
|
| 263 |
+
for src_col in unmapped_sources:
|
| 264 |
+
src_lower = src_col.lower()
|
| 265 |
+
|
| 266 |
+
# Check exact match with known synonyms
|
| 267 |
+
if src_lower in self.known_synonyms:
|
| 268 |
+
target = self.known_synonyms[src_lower]
|
| 269 |
+
if target in target_columns:
|
| 270 |
+
mapping[src_col] = target
|
| 271 |
+
continue
|
| 272 |
+
|
| 273 |
+
# Check for partial matches (more sophisticated)
|
| 274 |
+
# Remove common prefixes/suffixes for comparison
|
| 275 |
+
src_clean = src_lower.replace('pl_', '').replace('st_', '').replace('sy_', '').replace('koi_', '')
|
| 276 |
+
|
| 277 |
+
for known_src, known_tgt in self.known_synonyms.items():
|
| 278 |
+
known_clean = known_src.replace('pl_', '').replace('st_', '').replace('sy_', '').replace('koi_', '')
|
| 279 |
+
|
| 280 |
+
# Check if core part matches
|
| 281 |
+
if src_clean == known_clean or known_clean in src_clean or src_clean in known_clean:
|
| 282 |
+
if known_tgt in target_columns:
|
| 283 |
+
mapping[src_col] = known_tgt
|
| 284 |
+
break
|
| 285 |
+
|
| 286 |
+
# If still not mapped, try fuzzy matching on target columns
|
| 287 |
+
if src_col not in mapping:
|
| 288 |
+
for tgt_col in target_columns:
|
| 289 |
+
tgt_clean = tgt_col.replace('koi_', '')
|
| 290 |
+
# Check if source contains target name
|
| 291 |
+
if tgt_clean in src_lower or src_clean == tgt_clean:
|
| 292 |
+
mapping[src_col] = tgt_col
|
| 293 |
+
break
|
| 294 |
+
|
| 295 |
+
return mapping
|
| 296 |
+
|
| 297 |
+
def apply_mapping(self, df: pd.DataFrame, mapping: dict) -> pd.DataFrame:
|
| 298 |
+
"""
|
| 299 |
+
Применяет маппинг к датафрейму
|
| 300 |
+
|
| 301 |
+
Args:
|
| 302 |
+
df: Исходный датафрейм
|
| 303 |
+
mapping: Словарь маппинга
|
| 304 |
+
|
| 305 |
+
Returns:
|
| 306 |
+
Датафрейм с переименованными колонками
|
| 307 |
+
"""
|
| 308 |
+
# Переименовываем только те колонки, которые есть в маппинге
|
| 309 |
+
df_mapped = df.copy()
|
| 310 |
+
|
| 311 |
+
# Проверяем какие колонки из маппинга действительно есть в датафрейме
|
| 312 |
+
valid_mapping = {k: v for k, v in mapping.items() if k in df.columns}
|
| 313 |
+
|
| 314 |
+
if valid_mapping:
|
| 315 |
+
df_mapped = df_mapped.rename(columns=valid_mapping)
|
| 316 |
+
|
| 317 |
+
return df_mapped
|
| 318 |
+
|
| 319 |
+
def map_dataset(self, uploaded_df: pd.DataFrame, target_columns: list) -> tuple:
|
| 320 |
+
"""
|
| 321 |
+
Полный процесс маппинга датасета
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
uploaded_df: Загруженный датафрейм
|
| 325 |
+
target_columns: Список колонок тренировочного датасета
|
| 326 |
+
|
| 327 |
+
Returns:
|
| 328 |
+
Кортеж (mapped_dataframe, mapping_dict, info_message)
|
| 329 |
+
"""
|
| 330 |
+
# Копируем датафрейм чтобы не изменять оригинал
|
| 331 |
+
df_work = uploaded_df.copy()
|
| 332 |
+
|
| 333 |
+
# Конвертируем координаты в градусы если они в текстовом формате
|
| 334 |
+
coord_columns = [col for col in df_work.columns if any(
|
| 335 |
+
keyword in col.lower() for keyword in ['ra', 'dec', 'coord', 'right_ascension', 'declination']
|
| 336 |
+
)]
|
| 337 |
+
|
| 338 |
+
for col in coord_columns:
|
| 339 |
+
# Check first non-empty value
|
| 340 |
+
first_val = df_work[col].dropna().iloc[0] if len(df_work[col].dropna()) > 0 else None
|
| 341 |
+
if first_val and isinstance(first_val, str) and ('h' in first_val or 'd' in first_val):
|
| 342 |
+
# Convert entire column
|
| 343 |
+
df_work[col] = df_work[col].apply(convert_coordinates_to_degrees)
|
| 344 |
+
|
| 345 |
+
source_columns = df_work.columns.tolist()
|
| 346 |
+
|
| 347 |
+
# Get mapping via LLM
|
| 348 |
+
mapping = self.get_column_mapping(source_columns, target_columns)
|
| 349 |
+
|
| 350 |
+
# Apply mapping
|
| 351 |
+
mapped_df = self.apply_mapping(df_work, mapping)
|
| 352 |
+
|
| 353 |
+
# Create info message
|
| 354 |
+
if mapping:
|
| 355 |
+
info_msg = f"Successfully mapped {len(mapping)} columns:\n"
|
| 356 |
+
for src, tgt in mapping.items():
|
| 357 |
+
info_msg += f" * {src} -> {tgt}\n"
|
| 358 |
+
else:
|
| 359 |
+
info_msg = "Warning: No mapping performed - no matches found between columns\n"
|
| 360 |
+
info_msg += f"Source columns: {', '.join(source_columns[:5])}...\n"
|
| 361 |
+
|
| 362 |
+
# Check which target columns are missing
|
| 363 |
+
missing_cols = set(target_columns) - set(mapped_df.columns)
|
| 364 |
+
if missing_cols:
|
| 365 |
+
info_msg += f"\nWarning: Missing {len(missing_cols)} target columns (will be filled with NaN)\n"
|
| 366 |
+
|
| 367 |
+
return mapped_df, mapping, info_msg
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
def load_training_columns(csv_path: str) -> list:
|
| 371 |
+
"""
|
| 372 |
+
Load column names from training dataset
|
| 373 |
+
|
| 374 |
+
Args:
|
| 375 |
+
csv_path: Path to training dataset CSV file
|
| 376 |
+
|
| 377 |
+
Returns:
|
| 378 |
+
List of column names
|
| 379 |
+
"""
|
| 380 |
+
df = pd.read_csv(csv_path, comment='#', nrows=1)
|
| 381 |
+
return df.columns.tolist()
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==4.44.0
|
| 2 |
+
pandas==2.2.2
|
| 3 |
+
scikit-learn==1.5.1
|
| 4 |
+
joblib==1.4.2
|
| 5 |
+
together
|
| 6 |
+
python-dotenv==1.0.1
|
| 7 |
+
numpy==1.26.4
|