File size: 17,852 Bytes
82cfa24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import yfinance as yf
import pandas as pd
import plotly.graph_objects as go
import plotly.io as pio
from datetime import datetime, timedelta
import json
import os
import modal
import logging
import requests
from typing import Dict, Any

# DEBUG: Print modal module path and version
print(f"DEBUG: modal module loaded from: {modal.__file__}")
print(f"DEBUG: modal version: {modal.__version__}")

from .data_collector import StockDataCollector, YFinanceRateLimitError
from .moat_analyzer import MoatAnalyzer
from .config import AppConfig

class StockAnalyzer:
    """Handles stock analysis and visualization."""
    
    def __init__(self):
        self.config = AppConfig()
        self.data_collector = StockDataCollector()
        self.moat_analyzer = MoatAnalyzer()
        self._setup_logging()
    
    # Helper function to format numbers or return 'N/A'
    def _format_num(self, value):
        """Helper to format numbers, handling N/A gracefully."""
        if isinstance(value, (int, float)):
            return f"{value:,.2f}"
        return "N/A"
    
    def _setup_logging(self):
        """Setup logging configuration."""
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        )
        self.logger = logging.getLogger(__name__)
    
    def analyze(self, ticker):
        """Analyze a stock and return the analysis results."""
        try:
            stock = yf.Ticker(ticker)
            info = stock.info
            if not info or not info.get('regularMarketPrice'): # Check for essential info
                return {"analysis": f"Could not retrieve comprehensive stock information for {ticker}. Please check the ticker symbol and try again.", "revenue_chart": None, "fcf_chart": None, "shares_chart": None}

            # Initialize variables to None or default empty values
            latest_revenue = 'N/A'
            latest_fcf = 'N/A'
            latest_shares = 'N/A'
            latest_bs_data = {}
            latest_is_data = {}
            moat_summary_text = 'N/A'
            moat_rating = 'N/A'
            llm_insights = "AI insights temporarily unavailable."
            serper_results_str = ""
            revenue_chart_json = None
            fcf_chart_json = None
            shares_chart_json = None

            # Collect data for charts and LLM
            revenue_data = self.data_collector.get_revenue_history(ticker)
            fcf_data = self.data_collector.get_fcf_history(ticker)
            shares_data = self.data_collector.get_shares_history(ticker)

            # Generate charts
            revenue_chart = self._create_revenue_chart(revenue_data)
            fcf_chart = self._create_fcf_chart(fcf_data)
            shares_chart = self._create_shares_chart(shares_data)
            
            # Convert Plotly figures to JSON strings
            revenue_chart_json = pio.to_json(revenue_chart) if revenue_chart else None
            fcf_chart_json = pio.to_json(fcf_chart) if fcf_chart else None
            shares_chart_json = pio.to_json(shares_chart) if shares_chart else None

            # Safely get latest values with proper error handling
            if revenue_data is not None and not revenue_data.empty:
                latest_revenue = revenue_data.iloc[-1]['Revenue']
            if fcf_data is not None and not fcf_data.empty:
                latest_fcf = fcf_data.iloc[-1]['FCF']
            if shares_data is not None and not shares_data.empty:
                latest_shares = shares_data.iloc[-1]['Shares']

            # Attempt to get full balance sheet and income statement data
            balance_sheet = stock.balance_sheet
            income_statement = stock.financials

            # Extract relevant recent quarterly/annual data (handle potential empty dataframes)
            if balance_sheet is not None and not balance_sheet.empty:
                latest_bs_data = balance_sheet.iloc[:, 0].to_dict()
            if income_statement is not None and not income_statement.empty:
                latest_is_data = income_statement.iloc[:, 0].to_dict()

            # Get moat analysis
            moat_analyzer = MoatAnalyzer()
            moat_analysis_results = moat_analyzer.analyze_moat(ticker)
            moat_summary_text = moat_analysis_results["summary"]
            moat_rating = moat_analysis_results["rating"]
            
            try:
                # Look up the deployed Modal LLM app and get the remote function here
                generate_llm_response_modal = modal.Function.from_name("buffetbot-llm", "generate_llm_response")

                # Perform Serper search for moat articles
                data_collector = StockDataCollector()
                moat_search_results = data_collector._perform_serper_search(f"{ticker} economic moat analysis articles")
                
                # Format Serper search results
                serper_results_str = ""
                if moat_search_results:
                    serper_results_str = "\n\n#### External Moat Analysis (Web Search)\n" + "\n".join([
                        f"- **{r['title']}** (Source: {r['link']})\n  Snippet: {r['snippet']}"
                        for r in moat_search_results
                    ])
                
                # Get additional comprehensive data for LLM prompt
                revenue_data = data_collector.get_revenue_history(ticker)
                fcf_data = data_collector.get_fcf_history(ticker)
                shares_data = data_collector.get_shares_history(ticker)

                # Generate charts
                revenue_chart = self._create_revenue_chart(revenue_data)
                fcf_chart = self._create_fcf_chart(fcf_data)
                shares_chart = self._create_shares_chart(shares_data)
                
                # Convert Plotly figures to JSON strings
                revenue_chart_json = pio.to_json(revenue_chart) if revenue_chart else None
                fcf_chart_json = pio.to_json(fcf_chart) if fcf_chart else None
                shares_chart_json = pio.to_json(shares_chart) if shares_chart else None

                # Safely get latest values with proper error handling
                if revenue_data is not None and not revenue_data.empty:
                    latest_revenue = revenue_data.iloc[-1]['Revenue']
                if fcf_data is not None and not fcf_data.empty:
                    latest_fcf = fcf_data.iloc[-1]['FCF']
                if shares_data is not None and not shares_data.empty:
                    latest_shares = shares_data.iloc[-1]['Shares']

                # Attempt to get full balance sheet and income statement data
                balance_sheet = stock.balance_sheet
                income_statement = stock.financials

                # Extract relevant recent quarterly/annual data (handle potential empty dataframes)
                if balance_sheet is not None and not balance_sheet.empty:
                    latest_bs_data = balance_sheet.iloc[:, 0].to_dict()
                if income_statement is not None and not income_statement.empty:
                    latest_is_data = income_statement.iloc[:, 0].to_dict()

                # Format detailed financial data for the LLM prompt
                financial_data_str = f"""
#### Recent Financials (Latest Available)
- Latest Revenue: {self._format_num(latest_revenue)}
- Latest Free Cash Flow: {self._format_num(latest_fcf)}
- Latest Shares Outstanding: {self._format_num(latest_shares)}

#### Key Balance Sheet Items
- Total Assets: {self._format_num(latest_bs_data.get('Total Assets', 'N/A'))}
- Total Liabilities: {self._format_num(latest_bs_data.get('Total Liabilities', 'N/A'))}
- Total Debt: {self._format_num(info.get('totalDebt', 'N/A'))}
- Total Cash: {self._format_num(info.get('totalCash', 'N/A'))}
- Total Equity: {self._format_num(latest_bs_data.get('Total Equity', 'N/A'))}
- Debt to Equity: {self._format_num(info.get('debtToEquity', 'N/A'))}

#### Key Income Statement Items
- Gross Profits: {self._format_num(latest_is_data.get('Gross Profit', 'N/A'))}
- Operating Income: {self._format_num(latest_is_data.get('Operating Income', 'N/A'))}
- Net Income: {self._format_num(latest_is_data.get('Net Income', 'N/A'))}
- Earnings Growth (YoY): {self._format_num(info.get('earningsQuarterlyGrowth', 'N/A'))}%
"""

                # Ensure the LLM knows to use BuffetBot's persona and clearly mark AI insights
                system_message = """
As an AI-powered stock analyst named BuffetBot, your goal is to provide concise, clear, and actionable investment insights. When giving recommendations, state "BuffetBot recommends" instead of "I recommend". Clearly mark your analysis as "AI Insights:" at the beginning of your comprehensive insight. Focus on explaining key numbers, financial health, growth metrics, economic moat significance, and overall investment potential. Do not include "What to look for" sections for charts or specific metrics, as these will be provided separately. Avoid garbled text or incomplete sentences.
"""

                llm_prompt = self._generate_llm_prompt(ticker, {
                    'info': info,
                    'moat_summary': moat_summary_text,
                    'serper_results': serper_results_str,
                    'financial_data_str': financial_data_str
                })

                llm_insights = generate_llm_response_modal.remote(
                    system_message=system_message,
                    prompt=llm_prompt
                )
            except Exception as llm_e:
                self.logger.warning(f"Could not get LLM insights for {ticker}: {llm_e}")
                llm_insights = "AI insights temporarily unavailable. Please ensure Modal LLM service is deployed and accessible and Modal API keys are set as Hugging Face Space secrets."

            # Generate analysis text
            analysis = self._generate_analysis(ticker, info, moat_summary_text, moat_rating, llm_insights, latest_bs_data, latest_is_data, latest_revenue, latest_fcf, latest_shares)
            
            return {
                "analysis": analysis,
                "revenue_chart": revenue_chart_json,
                "fcf_chart": fcf_chart_json,
                "shares_chart": shares_chart_json
            }
            
        except YFinanceRateLimitError as e:
            self.logger.error(f"Yfinance rate limit hit for {ticker}: {e}")
            return {"analysis": f"Error analyzing stock: {e}. Charts may be unavailable.", "revenue_chart": None, "fcf_chart": None, "shares_chart": None}
        except requests.exceptions.HTTPError as e:
            if e.response.status_code == 429:
                # This case should now be handled by YFinanceRateLimitError
                self.logger.error(f"Unexpected 429 HTTP Error for {ticker}: {e}")
                return {"analysis": f"Error analyzing stock: You have been rate-limited by Yahoo Finance. Please wait a few minutes and try again. Charts may be unavailable.", "revenue_chart": None, "fcf_chart": None, "shares_chart": None}
            else:
                self.logger.error(f"HTTP error fetching data for {ticker}: {e}")
                return {"analysis": f"Error analyzing stock: An HTTP error occurred: {e}. Charts may be unavailable.", "revenue_chart": None, "fcf_chart": None, "shares_chart": None}
        except Exception as e:
            self.logger.error(f"Error analyzing stock {ticker}: {e}", exc_info=True) # Log full traceback
            return {"analysis": f"An unexpected error occurred while analyzing {ticker}: {str(e)}. Charts may be unavailable.", "revenue_chart": None, "fcf_chart": None, "shares_chart": None}
    
    def _create_revenue_chart(self, revenue_data):
        """Create revenue growth chart."""
        if revenue_data is None or revenue_data.empty:
            return None
            
        fig = go.Figure()
        fig.add_trace(go.Scatter(
            x=revenue_data.index,
            y=revenue_data['Revenue'],
            mode='lines+markers',
            name='Revenue'
        ))
        
        fig.update_layout(
            title='Revenue Growth',
            xaxis_title='Year',
            yaxis_title='Revenue (USD)',
            template='plotly_white'
        )
        
        return fig
    
    def _create_fcf_chart(self, fcf_data):
        """Create free cash flow chart."""
        if fcf_data is None or fcf_data.empty:
            return None
            
        fig = go.Figure()
        fig.add_trace(go.Scatter(
            x=fcf_data.index,
            y=fcf_data['FCF'],
            mode='lines+markers',
            name='Free Cash Flow'
        ))
        
        fig.update_layout(
            title='Free Cash Flow',
            xaxis_title='Year',
            yaxis_title='Free Cash Flow (USD)',
            template='plotly_white'
        )
        
        return fig
    
    def _create_shares_chart(self, shares_data):
        """Create shares outstanding chart."""
        if shares_data is None or shares_data.empty:
            return None
            
        fig = go.Figure()
        fig.add_trace(go.Scatter(
            x=shares_data.index,
            y=shares_data['Shares'],
            mode='lines+markers',
            name='Shares Outstanding'
        ))
        
        fig.update_layout(
            title='Shares Outstanding',
            xaxis_title='Year',
            yaxis_title='Shares (millions)',
            template='plotly_white'
        )
        
        return fig
    
    def _generate_analysis(self, ticker, info, moat_summary, moat_rating, llm_insights, latest_bs_data, latest_is_data, latest_revenue, latest_fcf, latest_shares):
        """Generate analysis text."""
        data_as_of_timestamp = info.get('regularMarketTime')
        data_as_of_date = datetime.fromtimestamp(data_as_of_timestamp).strftime('%Y-%m-%d %H:%M:%S') if data_as_of_timestamp else 'N/A'

        # Initialize serper_results_str
        serper_results_str = ""

        analysis = f"""
# {info.get('longName', ticker)} ({ticker}) Analysis

*Data as of: {data_as_of_date}*

## Company Overview
- Sector: {info.get('sector', 'N/A')}
- Industry: {info.get('industry', 'N/A')}
- Full-time Employees: {self._format_num(info.get('fullTimeEmployees', 'N/A'))}

## Current Status
- Current Price: {self._format_num(info.get('currentPrice', 'N/A'))}
- 52 Week High: {self._format_num(info.get('fiftyTwoWeekHigh', 'N/A'))}
- 52 Week Low: {self._format_num(info.get('fiftyTwoWeekLow', 'N/A'))}
- Market Cap: {self._format_num(info.get('marketCap', 'N/A'))}

## Key Valuation Metrics
- P/E Ratio: {self._format_num(info.get('trailingPE', 'N/A'))}
- Forward P/E: {self._format_num(info.get('forwardPE', 'N/A'))}
- PEG Ratio: {self._format_num(info.get('pegRatio', 'N/A'))}
- Dividend Yield: {self._format_num(info.get('dividendYield', 'N/A'))}%

## Growth and Profitability
- Revenue Growth (YoY): {self._format_num(info.get('revenueGrowth', 'N/A'))}%
- Profit Margins: {self._format_num(info.get('profitMargins', 'N/A'))}%
- Operating Margins: {self._format_num(info.get('operatingMargins', 'N/A'))}%

## Financial Health Indicators
- Current Ratio: {self._format_num(info.get('currentRatio', 'N/A'))}
- Debt to Equity: {self._format_num(info.get('debtToEquity', 'N/A'))}
- Return on Equity: {self._format_num(info.get('returnOnEquity', 'N/A'))}%
- Debt to Asset Ratio: {self._format_num(info.get('totalDebt', 0) / info.get('totalAssets', 1) if info.get('totalAssets') else 'N/A')}

#### Recent Financials (Latest Available)
- Latest Revenue: {self._format_num(latest_revenue)}
- Latest Free Cash Flow: {self._format_num(latest_fcf)}
- Latest Shares Outstanding: {self._format_num(latest_shares)}

#### Key Balance Sheet Items
- Total Assets: {self._format_num(latest_bs_data.get('Total Assets', 'N/A'))}
- Total Liabilities: {self._format_num(latest_bs_data.get('Total Liabilities', 'N/A'))}
- Total Debt: {self._format_num(info.get('totalDebt', 'N/A'))}
- Total Cash: {self._format_num(info.get('totalCash', 'N/A'))}
- Total Equity: {self._format_num(latest_bs_data.get('Total Equity', 'N/A'))}
- Debt to Equity: {self._format_num(info.get('debtToEquity', 'N/A'))}

#### Key Income Statement Items
- Gross Profits: {self._format_num(latest_is_data.get('Gross Profit', 'N/A'))}
- Operating Income: {self._format_num(latest_is_data.get('Operating Income', 'N/A'))}
- Net Income: {self._format_num(latest_is_data.get('Net Income', 'N/A'))}
- Earnings Growth (YoY): {self._format_num(info.get('earningsQuarterlyGrowth', 'N/A'))}%

## Economic Moat Analysis
{moat_summary}
{serper_results_str}

## AI Insights
{llm_insights}
"""
        
        return analysis 

    def _generate_llm_prompt(self, ticker: str, data: Dict[str, Any]) -> str:
        """Generate a focused prompt for the LLM."""
        info = data.get('info', {})
        moat_summary_text = data.get('moat_summary', 'N/A')
        serper_results_str = data.get('serper_results', 'N/A')
        financial_data_str = data.get('financial_data_str', 'N/A')

        llm_prompt = f"""
Analyze {ticker} ({info.get('longName', ticker)}) as an investment opportunity.

Key Metrics:
- Price: ${self._format_num(info.get('currentPrice', 'N/A'))}
- P/E: {self._format_num(info.get('trailingPE', 'N/A'))}
- Revenue Growth: {self._format_num(info.get('revenueGrowth', 'N/A'))}%
- Profit Margin: {self._format_num(info.get('profitMargins', 'N/A'))}%
- Debt/Equity: {self._format_num(info.get('debtToEquity', 'N/A'))}
- ROE: {self._format_num(info.get('returnOnEquity', 'N/A'))}%

Moat Analysis:
{moat_summary_text}
{serper_results_str}

Provide a concise analysis focusing on:
1. Key strengths and risks
2. Economic moat significance
3. Clear investment recommendation

Keep your response under 200 words.
"""
        return llm_prompt