File size: 3,212 Bytes
82cfa24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import modal

# Define the container image with vLLM
vllm_image = (
    modal.Image.debian_slim(python_version="3.12")
    .pip_install(
        "vllm==0.7.2",
        "huggingface_hub[hf_transfer]==0.26.2",
        "flashinfer-python==0.2.0.post2",
        extra_index_url="https://flashinfer.ai/whl/cu124/torch2.5",
    )
    .env({"HF_HUB_ENABLE_HF_TRANSFER": "1"})
)

# Enable vLLM V1 engine for better performance
vllm_image = vllm_image.env({"VLLM_USE_V1": "1"})

# Model configuration
MODELS_DIR = "/llamas"
MODEL_NAME = "neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16"
MODEL_REVISION = "a7c09948d9a632c2c840722f519672cd94af885d"

# Set up caching volumes
hf_cache_vol = modal.Volume.from_name("huggingface-cache", create_if_missing=True)
vllm_cache_vol = modal.Volume.from_name("vllm-cache", create_if_missing=True)

# Create Modal app
app = modal.App("buffetbot-llm-service")

# Configuration
N_GPU = 1  # Number of GPUs to use
API_KEY = "buffetbot-llm-key"  # We'll replace this with a Modal Secret
MINUTES = 60
VLLM_PORT = 8000

@app.function(
    image=vllm_image,
    gpu=f"H100:{N_GPU}",
    scaledown_window=15 * MINUTES,
    timeout=10 * MINUTES,
    volumes={
        "/root/.cache/huggingface": hf_cache_vol,
        "/root/.cache/vllm": vllm_cache_vol,
    },
    secrets=[modal.Secret.from_name("buffetbot-vllm-config")]
)
@modal.concurrent(max_inputs=100)
@modal.web_server(port=VLLM_PORT, startup_timeout=5 * MINUTES)
def serve():
    import subprocess
    import os

    cmd = [
        "vllm",
        "serve",
        "--uvicorn-log-level=info",
        MODEL_NAME,
        "--revision",
        MODEL_REVISION,
        "--host",
        "0.0.0.0",
        "--port",
        str(VLLM_PORT),
        "--api-key",
        os.environ["API_KEY"],
    ]

    subprocess.Popen(" ".join(cmd), shell=True)

@app.local_entrypoint()
def test(test_timeout=10 * MINUTES):
    import json
    import time
    import urllib.request

    print(f"Running health check for server at {serve.get_web_url()}")
    up, start, delay = False, time.time(), 10
    while not up:
        try:
            with urllib.request.urlopen(serve.get_web_url() + "/health") as response:
                if response.getcode() == 200:
                    up = True
        except Exception:
            if time.time() - start > test_timeout:
                break
            time.sleep(delay)

    assert up, f"Failed health check for server at {serve.get_web_url()}"
    print(f"Successful health check for server at {serve.get_web_url()}")

    # Test with a sample prompt
    messages = [{"role": "user", "content": "What is the economic moat of Apple Inc.?"}]
    print(f"Sending a sample message to {serve.get_web_url()}", *messages, sep="\n")

    headers = {
        "Authorization": f"Bearer {API_KEY}",
        "Content-Type": "application/json",
    }
    payload = json.dumps({"messages": messages, "model": MODEL_NAME})
    req = urllib.request.Request(
        serve.get_web_url() + "/v1/chat/completions",
        data=payload.encode("utf-8"),
        headers=headers,
        method="POST",
    )
    with urllib.request.urlopen(req) as response:
        print(json.loads(response.read().decode()))