Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,67 +1,23 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import soundfile as sf
|
| 3 |
import tempfile
|
| 4 |
-
from voxcpm import VoxCPM
|
| 5 |
-
from modelscope import snapshot_download
|
| 6 |
-
|
| 7 |
-
# ===============================
|
| 8 |
-
# Pre-download models to cache
|
| 9 |
-
# ===============================
|
| 10 |
-
snapshot_download('iic/speech_zipenhancer_ans_multiloss_16k_base', cache_dir="./models")
|
| 11 |
-
snapshot_download('iic/SenseVoiceSmall', cache_dir="./models")
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
# Load VoxCPM model (only once)
|
| 15 |
-
# ===============================
|
| 16 |
model = VoxCPM.from_pretrained("openbmb/VoxCPM-0.5B")
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
# ===============================
|
| 21 |
-
def tts_generate(text, cfg_value, inference_steps, normalize, denoise, fast_mode):
|
| 22 |
-
# Fast mode: reduce quality but speed up inference
|
| 23 |
-
if fast_mode:
|
| 24 |
-
cfg_value = 1.5
|
| 25 |
-
inference_steps = 6
|
| 26 |
-
normalize = False
|
| 27 |
-
denoise = False
|
| 28 |
-
|
| 29 |
-
wav = model.generate(
|
| 30 |
-
text=text,
|
| 31 |
-
cfg_value=cfg_value,
|
| 32 |
-
inference_timesteps=inference_steps,
|
| 33 |
-
normalize=normalize,
|
| 34 |
-
denoise=denoise
|
| 35 |
-
)
|
| 36 |
-
|
| 37 |
tmp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
| 38 |
sf.write(tmp_wav.name, wav, 16000)
|
| 39 |
return tmp_wav.name
|
| 40 |
|
| 41 |
-
|
| 42 |
-
# Gradio UI
|
| 43 |
-
# ===============================
|
| 44 |
-
tts_app = gr.Interface(
|
| 45 |
fn=tts_generate,
|
| 46 |
-
inputs=
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
gr.Slider(5, 50, value=10, step=1, label="Inference timesteps"),
|
| 50 |
-
gr.Checkbox(value=True, label="Enable Normalization"),
|
| 51 |
-
gr.Checkbox(value=True, label="Enable Denoise"),
|
| 52 |
-
gr.Checkbox(value=False, label="Enable Fast Mode (lower quality, faster)"),
|
| 53 |
-
],
|
| 54 |
-
outputs=gr.Audio(type="filepath", label="Generated Audio"),
|
| 55 |
-
title="🎙️ VoxCPM Text-to-Speech Generator",
|
| 56 |
-
description=(
|
| 57 |
-
"Generate expressive speech from text using VoxCPM TTS. "
|
| 58 |
-
"Adjust CFG for text accuracy vs naturalness, and inference timesteps for speed vs quality. "
|
| 59 |
-
"Use 'Fast Mode' for quick previews."
|
| 60 |
-
)
|
| 61 |
)
|
| 62 |
|
| 63 |
-
# ===============================
|
| 64 |
-
# Launch App
|
| 65 |
-
# ===============================
|
| 66 |
if __name__ == "__main__":
|
| 67 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from voxcpm import VoxCPM
|
| 3 |
import soundfile as sf
|
| 4 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Load model once
|
|
|
|
|
|
|
| 7 |
model = VoxCPM.from_pretrained("openbmb/VoxCPM-0.5B")
|
| 8 |
|
| 9 |
+
def tts_generate(text):
|
| 10 |
+
wav = model.generate(text=text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
tmp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
| 12 |
sf.write(tmp_wav.name, wav, 16000)
|
| 13 |
return tmp_wav.name
|
| 14 |
|
| 15 |
+
app = gr.Interface(
|
|
|
|
|
|
|
|
|
|
| 16 |
fn=tts_generate,
|
| 17 |
+
inputs=gr.Textbox(label="Enter text", value="Hello Hugging Face!"),
|
| 18 |
+
outputs=gr.Audio(type="filepath"),
|
| 19 |
+
title="VoxCPM TTS Test"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
if __name__ == "__main__":
|
| 23 |
+
app.launch()
|