File size: 18,968 Bytes
c0a2269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9052a39
 
4c890b2
9052a39
 
 
 
c0a2269
 
 
 
 
 
 
 
 
 
 
 
 
 
9784deb
c0a2269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b518d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a2269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b518d4
 
 
 
 
 
 
c0a2269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b518d4
 
 
 
 
 
 
 
 
 
 
 
 
c0a2269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9052a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0a2269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9052a39
c0a2269
 
f067128
 
c0a2269
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import torch
from typing import Annotated, TypedDict, Literal
from langchain_community.tools import DuckDuckGoSearchRun
from langchain_core.tools import tool
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langchain_core.messages import SystemMessage, trim_messages, AIMessage, HumanMessage, ToolCall

from langchain_huggingface.llms import HuggingFacePipeline
from langchain_huggingface import ChatHuggingFace
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.runnables import chain
from uuid import uuid4
import re
import matplotlib.pyplot as plt
import PIL.Image as Image
import gradio as gr
import spaces   

from rdkit import Chem
from rdkit.Chem import AllChem, QED
from rdkit.Chem import Draw
from rdkit import rdBase
from rdkit.Chem import rdMolAlign
import os
from rdkit import RDConfig
from rdkit.Chem.Features.ShowFeats import _featColors as featColors
from rdkit.Chem.FeatMaps import FeatMaps
from elevenlabs.client import ElevenLabs
from elevenlabs import stream
import base64

eleven_key = os.getenv("eleven_key")

elevenlabs = ElevenLabs(api_key=eleven_key)

fdef = AllChem.BuildFeatureFactory(os.path.join(RDConfig.RDDataDir,'BaseFeatures.fdef'))

fmParams = {}
for k in fdef.GetFeatureFamilies():
    fparams = FeatMaps.FeatMapParams()
    fmParams[k] = fparams

device = "cuda" if torch.cuda.is_available() else "cpu"

hf = HuggingFacePipeline.from_model_id(
    #model_id= "swiss-ai/Apertus-8B-Instruct-2509",
    model_id= "microsoft/Phi-4-mini-instruct",
    task="text-generation",
    pipeline_kwargs = {"max_new_tokens": 700, "temperature": 0.1})

chat_model = ChatHuggingFace(llm=hf)

class State(TypedDict):
  '''
    The state of the agent.
  '''
  messages: Annotated[list, add_messages]
  query_smiles: str
  query_task: str
  query_path: str
  query_reference: str
  tool_choice: tuple
  which_tool: int
  props_string: str
  #(Literal["lipinski_tool", "substitution_tool", "pharm_feature_tool"],
  #                   Literal["lipinski_tool", "substitution_tool", "pharm_feature_tool"])


def substitution_node(state: State) -> State:
  '''
    A simple substitution routine that looks for a substituent on a phenyl ring and
    substitutes different fragments in that location. Returns a list of novel molecules and their
    QED score (1 is most drug-like, 0 is least drug-like).

      Args:
        smiles: the input smiles string
      Returns:
        new_smiles_string: a string of novel molecules and their QED scores.
  '''
  print("substitution tool")
  print('===================================================')

  smiles = state["query_smiles"]
  current_props_string = state["props_string"]

  new_fragments = ["c(Cl)c", "c(F)c", "c(O)c", "c(C)c", "c(OC)c", "c([NH3+])c",
                   "c(Br)c", "c(C(F)(F)(F))c"]

  new_smiles = []
  for fragment in new_fragments:
    m = re.findall(r"c(\D\D*)c", smiles)
    if len(m) != 0:
      for group in m:
        #print(group)
        if fragment not in group:
          new_smile = smiles.replace(group[1:], fragment)
          new_smiles.append(new_smile)

  qeds = []
  for new_smile in new_smiles:
    qeds.append(get_qed(new_smile))
  original_qed = get_qed(smiles)

  new_smiles_string = "Substitution or Analogue creation tool results: \n"
  new_smiles_string += f"The original molecule SMILES was {smiles} with QED {original_qed}.\n"
  new_smiles_string += "Novel Molecules or Analogues and QED values: \n"
  for i in range(len(new_smiles)):
    new_smiles_string += f"SMILES: {new_smiles[i]}, QED: {qeds[i]:.3f}\n"
  new_mols = [Chem.MolFromSmiles(x) for x in new_smiles]
  if len(new_smiles) > 0:
    img = Draw.MolsToGridImage(new_mols, molsPerRow=3, subImgSize=(200,200), legends=[f"QED: {qeds[i]:.3f}" for i in range(len(new_smiles))])
    img.save('Substitution_image.png')
  else:
    new_smiles_string += "No valid substitutions were found.\n"

  print(new_smiles_string)
  current_props_string += new_smiles_string
  state["props_string"] = current_props_string
  state["which_tool"] += 1
  return state

def get_qed(smiles):
  '''
    Helper function to compute QED for a given molecule.
      Args:
        smiles: the input smiles string
      Returns:
        qed: the QED score of the molecule.
  '''
  mol = Chem.MolFromSmiles(smiles)
  qed = Chem.QED.default(mol)

  return qed

def lipinski_node(state: State) -> State:
  '''
    A tool to calculate QED and other lipinski properties of a molecule.
      Args:
        smiles: the input smiles string
      Returns:
        props_string: a string of the QED and other lipinski properties of the molecule,
                      including Molecular Weight, LogP, HBA, HBD, Polar Surface Area,
                      Rotatable Bonds, Aromatic Rings and Undesireable Moieties.
  '''
  print("lipinski tool")
  print('===================================================')

  smiles = state["query_smiles"]
  current_props_string = state["props_string"]

  mol = Chem.MolFromSmiles(smiles)
  qed = Chem.QED.default(mol)

  p = Chem.QED.properties(mol)
  mw = p[0]
  logP = p[1]
  hba = p[2]
  hbd = p[3]
  psa = p[4]
  rb = p[5]
  ar = p[6]
  um = p[7]

  props_string = "Lipinski tool results: \n"
  props_string += f'''QED and other lipinski properties of the molecule:
    SMILES: {smiles},
    QED: {qed:.3f},
    Molecular Weight: {mw:.3f},
    LogP: {logP:.3f},
    Hydrogen bond acceptors: {hba},
    Hydrogen bond donors: {hbd},
    Polar Surface Area: {psa:.3f},
    Rotatable Bonds: {rb},
    Aromatic Rings: {ar},
    Undesireable moieties: {um}
  '''

  current_props_string += props_string
  state["props_string"] = current_props_string
  state["which_tool"] += 1
  return state

def pharmfeature_node(state: State) -> State:
  '''
    A tool to compare the pharmacophore features of a query molecule against
    a those of a reference molecule and report the pharmacophore features of both and the feature
    score of the query molecule.

      Args:
        known_smiles: the reference smiles string
        test_smiles: the query smiles string
      Returns:
        props_string: a string of the pharmacophore features of both molecules and the feature
                      score of the query molecule.
  '''
  print("pharmfeature tool")
  print('===================================================')

  test_smiles = state["query_smiles"]
  known_smiles = state["query_reference"]
  current_props_string = state["props_string"]

  smiles = [known_smiles, test_smiles]
  mols = [Chem.MolFromSmiles(x) for x in smiles]

  mols = [Chem.AddHs(m) for m in mols]
  ps = AllChem.ETKDGv3()

  for m in mols:
      AllChem.EmbedMolecule(m,ps)

  o3d = rdMolAlign.GetO3A(mols[1],mols[0])
  o3d.Align()

  keep = ('Donor', 'Acceptor', 'NegIonizable', 'PosIonizable', 'ZnBinder', 'Aromatic', 'LumpedHydrophobe')
  feat_hash = {'Donor': 'Hydrogen bond donors', 'Acceptor': 'Hydrogen bond acceptors',
               'NegIonizable': 'Negatively ionizable groups', 'PosIonizable': 'Positively ionizable groups',
               'ZnBinder': 'Zinc Binders', 'Aromatic': 'Aromatic rings', 'LumpedHydrophobe': 'Hydrophobic/non-polar groups' }

  feat_vectors = []
  for m in mols:
      rawFeats = fdef.GetFeaturesForMol(m)
      feat_vectors.append([f for f in rawFeats if f.GetFamily() in keep])

  feat_maps = [FeatMaps.FeatMap(feats = x,weights=[1]*len(x),params=fmParams) for x in feat_vectors]
  test_score = feat_maps[0].ScoreFeats(feat_maps[1].GetFeatures())/(feat_maps[0].GetNumFeatures())

  feats_known = {}
  feats_test = {}
  for feat in feat_vectors[0]:
    if feat.GetFamily() not in feats_known.keys():
      feats_known[feat.GetFamily()]  = 1
    else:
      feats_known[feat.GetFamily()] += 1

  for feat in feat_vectors[1]:
    if feat.GetFamily() not in feats_test.keys():
      feats_test[feat.GetFamily()]  = 1
    else:
      feats_test[feat.GetFamily()] += 1

  props_string = "PharmFeature tool results: \n"
  props_string += f"The Pharmacophore Feature Overlap Score of the test molecule \
versus the reference molecule is {test_score:.3f}. \n\n"

  for feat in feats_known.keys():
    props_string += f"There are {feats_known[feat]} {feat_hash[feat]} in the reference molecule. \n"

  for feat in feats_test.keys():
    props_string += f"There are {feats_test[feat]} {feat_hash[feat]} in the test molecule. \n"

  current_props_string += props_string
  state["props_string"] = current_props_string
  state["which_tool"] += 1
  return state

def first_node(state: State) -> State:
  '''
    The first node of the agent. This node receives the input and asks the LLM
    to determine which is the best tool to use to answer the QUERY TASK.

      Input: the initial prompt from the user. should contain only one of more of the following:

             smiles: the smiles string, task: the query task, path: the path to the file,
             reference: the reference smiles

             the value should be separated from the name by a ':' and each field should
             be separated from the previous one by a ','.

             All of these values are saved to the state

      Output: the tool choice
  '''
  query_smiles = None
  state["query_smiles"] = query_smiles
  query_task = None
  state["query_task"] = query_task
  query_path = None
  state["query_path"] = query_path
  query_reference = None
  state["query_reference"] = query_reference
  props_string = ""
  state["props_string"] = props_string

  raw_input = state["messages"][-1].content
  parts = raw_input.split(',')
  for part in parts:
    if 'smiles' in part:
      query_smiles = part.split(':')[1]
      if query_smiles.lower() == 'none':
        query_smiles = None
      state["query_smiles"] = query_smiles
    if 'task' in part:
      query_task = part.split(':')[1]
      state["query_task"] = query_task
    if 'path' in part:
      query_path = part.split(':')[1]
      if query_path.lower() == 'none':
        query_path = None
      state["query_path"] = query_path
    if 'reference' in part:
      query_reference = part.split(':')[1]
      if query_reference.lower() == 'none':
        query_reference = None
      state["query_reference"] = query_reference

  prompt = f'You are given a QUERY_TASK given below and a set of available tools. \
  Your job is to determine which tool(S) if any can accomplish the QUERY_TASK.\n\n \
  Choose only from the tool names listed below.\n \
  If exactly one tool can preform the task, reply with the tool name followed by "#".\n \
  If two toold are required together, reply with both tool names separated by a comma, \
  in a single line followed by a "#".\n \
  If none of the tools can perform the task, reply with "None #".\n \
  Reply with ONLY the tool names followed by "#". Tools:\n \
  lipinski_tool: Calculates the following moelcular properties: Quantitative \
  Estimate of Drug-likeness (QED), Molecular weight, LogP (measures lipophilicity, higher is more lipophilic), \
  HBA, HBD, Polar Surface Area, number of rotatable bonds, number of aromatic rings and Undesireable Moieties. \n \
  substitution_tool: Generates structural analogues of the molecule by substituting \
  different chemical groups on the original molecule. Outputs novel molecules and their \
  QED score (1 is most drug-like, 0 is least drug-like). \n \
  pharm_feature_tool: this tool compares the pharmacophore features of a query molecule against \
  a reference molecule. Rreporting the shared pharmacophore features and similarity feature score. \
  Does not report features unique to either moelcule.' 

  res = chat_model.invoke(prompt)

  tool_choices = str(res).split('<|assistant|>')[1].split('#')[0].strip()
  tool_choices = tool_choices.split(',')
  if len(tool_choices) == 1:
    if tool_choices[0].strip().lower() == 'none':
      tool_choice = (None, None)
    else:
      tool_choice = (tool_choices[0].strip().lower(), None)
  elif len(tool_choices) == 2:
    if tool_choices[0].strip().lower() == 'none':
      tool_choice = (None, tool_choices[1].strip().lower())
    elif tool_choices[1].strip().lower() == 'none':
      tool_choice = (tool_choices[0].strip().lower(), None)
    else:
      tool_choice = (tool_choices[0].strip().lower(), tool_choices[1].strip().lower())
  else:
    tool_choice = (None, None)
  state["tool_choice"] = tool_choice
  state["which_tool"] = 0
  print(f"The chosen tools are: {tool_choice}")

  return state

def loop_node(state: State) -> State:
  '''
    This node accepts the tool returns and decides if it needs to call another
    tool or go on to the parser node.

      Input: the tool returns.
      Output: the next node to call.
  '''
  return state

def parser_node(state: State) -> State:
  '''
    This is the third node in the agent. It receives the output from the tool,
    puts it into a prompt as CONTEXT, and asks the LLM to answer the original
    query.

      Input: the output from the tool.
      Output: the answer to the original query.
  '''
  props_string = state["props_string"]
  query_task = state["query_task"]

  prompt = f'Using only the information provided in the CONTEXT below, \
  answer the QUERY_TASK.\n \
  Your answer must:\n Directly address the QUERY_TASK.\n \
  Use only facts found in the CONTEXT (do not invent information).\n \
  Be concise, precise and logically consistent.\n End your answer with a "#" \
  QUERY_TASK: {query_task}.\n \
  CONTEXT: {props_string}.\n '

  res = chat_model.invoke(prompt)
  return {"messages": res}

def reflect_node(state: State) -> State:
  '''
    This is the fourth node of the agent. It recieves the LLMs previous answer and
    tries to improve it.

      Input: the LLMs last answer.
      Output: the improved answer.
  '''
  previous_answer = state["messages"][-1].content
  props_string = state["props_string"]

  prompt = f'You will revise the PREVIOUS ANSWER below using the tools results \
  which you provided below  \
  INSTRUCTIONS:\n \
  Retain all correct information from the PREVIOUS ANSWER. \
  Incorporate only relevent information from the TOOL RESULTS. \
  Add clarifying or enriching details. \
  Do NOT invent or assume any information that is not present in the input. \
  Improve clarity, precision, factual accuracy, and organisation. \
  Provide a well-structured improved asnwer. \
  End \
  your new answer with a "#" \
  PREVIOUS ANSWER: {previous_answer}.\n \
  TOOL RESULTS: {props_string}. '

  res = chat_model.invoke(prompt)
  return {"messages": res}

def get_chemtool(state):
  '''
  '''
  which_tool = state["which_tool"]
  tool_choice = state["tool_choice"]
  
  if tool_choice is None or tool_choice == (None, None):
    return None
  
  if which_tool == 0 or which_tool == 1:
    current_tool = tool_choice[which_tool]
    if current_tool is None:
      return None
  elif which_tool > 1:
    current_tool = None

  return current_tool

def pretty_print(answer):
  final = str(answer['messages'][-1]).split('<|assistant|>')[-1].split('#')[0].strip("n").strip('\\').strip('n').strip('\\')
  for i in range(0,len(final),100):
    print(final[i:i+100])

def print_short(answer):
  for i in range(0,len(answer),100):
    print(answer[i:i+100])

builder = StateGraph(State)
builder.add_node("first_node", first_node)
builder.add_node("substitution_node", substitution_node)
builder.add_node("lipinski_node", lipinski_node)
builder.add_node("pharmfeature_node", pharmfeature_node)
builder.add_node("loop_node", loop_node)
builder.add_node("parser_node", parser_node)
builder.add_node("reflect_node", reflect_node)

builder.add_edge(START, "first_node")
builder.add_conditional_edges("first_node", get_chemtool, {
    "substitution_tool": "substitution_node",
    "lipinski_tool": "lipinski_node",
    "pharm_feature_tool": "pharmfeature_node",
    None: "parser_node"})

builder.add_edge("lipinski_node", "loop_node")
builder.add_edge("substitution_node", "loop_node")
builder.add_edge("pharmfeature_node", "loop_node")

builder.add_conditional_edges("loop_node", get_chemtool, {
    "substitution_tool": "substitution_node",
    "lipinski_tool": "lipinski_node",
    "pharm_feature_tool": "pharmfeature_node",
    None: "parser_node"})

builder.add_edge("parser_node", "reflect_node")
builder.add_edge("reflect_node", END)

graph = builder.compile()

@spaces.GPU
def PropAgent(task, smiles, reference):

  #if Substitution_image.png exists, remove it
  if os.path.exists('Substitution_image.png'):
    os.remove('Substitution_image.png')

  input = {
    "messages": [
        HumanMessage(f'query_smiles: {smiles}, query_task: {task}, query_reference: {reference}')
    ]
  }
  #print(input)

  replies = []
  for c in graph.stream(input): #, stream_mode='updates'):
    m = re.findall(r'[a-z]+\_node', str(c))
    if len(m) != 0:
      reply = c[str(m[0])]['messages']
      if 'assistant' in str(reply):
        reply = str(reply).split("<|assistant|>")[-1].split('#')[0].strip()
        replies.append(reply)
  #check if image exists
  if os.path.exists('Substitution_image.png'):
    img_loc = 'Substitution_image.png'
    img = Image.open(img_loc)
  #else create a dummy blank image
  else:
    img = Image.new('RGB', (250, 250), color = (255, 255, 255))

  elita_text = replies[-1]

  voice_settings = {
          "stability": 0.37,
          "similarity_boost": 0.90,
          "style": 0.0,
          "speed": 1.05
      }

  audio_stream = elevenlabs.text_to_speech.convert(
      text = elita_text,
      voice_id = 'G5KS88IIzHIX1ogRxdrA',
      model_id = 'eleven_multilingual_v2',
      output_format='mp3_44100_128',
      voice_settings=voice_settings
  )

  audio_converted = b"".join(audio_stream)
  audio = base64.b64encode(audio_converted).decode("utf-8")
  audio_player = f'<audio src="data:audio/mpeg;base64,{audio}" controls autoplay></audio>'

  return replies[-1], img, audio_player

with gr.Blocks(fill_height=True) as forest:
  gr.Markdown('''
              # Properties Agent 
              - uses RDKit to calculate lipinski properties
              - finds pharmacophore similarity between two molecules
              - generated analogues of a molecule
              ''')

  name, smiles = None, None
  with gr.Row():
    with gr.Column():
      smiles = gr.Textbox(label="Molecule SMILES of interest (optional): ", placeholder='none')
      ref = gr.Textbox(label="Reference molecule SMILES of interest (optional): ", placeholder='none')
      task = gr.Textbox(label="Task for Agent: ")
      calc_btn = gr.Button(value = "Submit to Agent")
    with gr.Column():
      props = gr.Textbox(label="Agent results: ", lines=20 )
      pic = gr.Image(label="Molecule")
    voice = gr.HTML()


    calc_btn.click(PropAgent, inputs = [task, smiles, ref], outputs = [props, pic, voice])
    task.submit(PropAgent, inputs = [task, smiles, ref], outputs = [props, pic, voice])

forest.launch(debug=False, mcp_server=True)