Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from huggingface_hub import login, hf_hub_download
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from llama_cpp import Llama
|
| 6 |
+
import chromadb
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
from deep_translator import GoogleTranslator # Changed from googletrans to deep_translator
|
| 9 |
+
import re
|
| 10 |
+
import requests # Import the requests library
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Charger le token depuis les secrets
|
| 14 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 15 |
+
login(token=hf_token)
|
| 16 |
+
|
| 17 |
+
# Charger le dataset depuis un fichier CSV local
|
| 18 |
+
csv_file = "/content/indian_food (1).csv"
|
| 19 |
+
try:
|
| 20 |
+
df = pd.read_csv(csv_file)
|
| 21 |
+
print("Dataset chargé avec succès depuis le fichier CSV local.")
|
| 22 |
+
except FileNotFoundError:
|
| 23 |
+
print(f"Erreur: Fichier CSV non trouvé à l'emplacement: {csv_file}")
|
| 24 |
+
exit()
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Erreur lors du chargement du CSV: {e}")
|
| 27 |
+
exit()
|
| 28 |
+
|
| 29 |
+
# Initialisation du modèle Llama
|
| 30 |
+
llm = None # Initialize to None
|
| 31 |
+
try:
|
| 32 |
+
# Use /tmp for the model path within Hugging Face Spaces
|
| 33 |
+
model_path = hf_hub_download(
|
| 34 |
+
repo_id="TheBloke/CapybaraHermes-2.5-Mistral-7B-GGUF",
|
| 35 |
+
filename="capybarahermes-2.5-mistral-7b.Q2_K.gguf",
|
| 36 |
+
cache_dir="/tmp" # Store the model in /tmp
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
llm = Llama(
|
| 40 |
+
model_path=model_path,
|
| 41 |
+
n_ctx=2048,
|
| 42 |
+
)
|
| 43 |
+
print("Llama model loaded successfully.")
|
| 44 |
+
except Exception as e:
|
| 45 |
+
print(f"Error loading Llama model: {e}")
|
| 46 |
+
|
| 47 |
+
# Initialisation de ChromaDB Vector Store
|
| 48 |
+
class VectorStore:
|
| 49 |
+
def __init__(self, collection_name):
|
| 50 |
+
self.embedding_model = SentenceTransformer('sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
|
| 51 |
+
self.chroma_client = chromadb.Client()
|
| 52 |
+
|
| 53 |
+
if collection_name in self.chroma_client.list_collections():
|
| 54 |
+
self.chroma_client.delete_collection(collection_name)
|
| 55 |
+
self.collection = self.chroma_client.create_collection(name=collection_name)
|
| 56 |
+
|
| 57 |
+
def populate_vectors(self, df):
|
| 58 |
+
titles = df['name'].tolist()
|
| 59 |
+
ingredients = df['ingredients'].tolist()
|
| 60 |
+
diets = df['diet'].tolist()
|
| 61 |
+
prep_times = df['prep_time'].tolist()
|
| 62 |
+
|
| 63 |
+
# Load nutritional information, handling potentially missing columns and types
|
| 64 |
+
calories = df['calories'].astype(str).tolist() if 'calories' in df else ['None'] * len(df)
|
| 65 |
+
sugar = df['sugar'].astype(str).tolist() if 'sugar' in df else ['None'] * len(df)
|
| 66 |
+
gluten = df['gluten'].astype(str).tolist() if 'gluten' in df else ['None'] * len(df)
|
| 67 |
+
|
| 68 |
+
titles = titles[:2000]
|
| 69 |
+
ingredients = ingredients[:2000]
|
| 70 |
+
diets = diets[:2000]
|
| 71 |
+
prep_times = prep_times[:2000]
|
| 72 |
+
calories = calories[:2000]
|
| 73 |
+
sugar = sugar[:2000]
|
| 74 |
+
gluten = gluten[:2000]
|
| 75 |
+
|
| 76 |
+
texts = [
|
| 77 |
+
f"Recipe: {title}. Ingredients: {ingredient}. Diet: {diet}. Prep Time: {prep_time} minutes. Calories: {calorie}. Sugar: {sugar}. Gluten: {gluten}."
|
| 78 |
+
for title, ingredient, diet, prep_time, calorie, sugar, gluten in zip(titles, ingredients, diets, prep_times, calories, sugar, gluten)
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
for i, item in enumerate(texts):
|
| 82 |
+
embeddings = self.embedding_model.encode(item).tolist()
|
| 83 |
+
self.collection.add(embeddings=[embeddings], documents=[item], ids=[str(i)])
|
| 84 |
+
|
| 85 |
+
def search_context(self, query, n_results=1):
|
| 86 |
+
query_embedding = self.embedding_model.encode([query]).tolist()
|
| 87 |
+
results = self.collection.query(query_embeddings=query_embedding, n_results=n_results)
|
| 88 |
+
return results['documents']
|
| 89 |
+
|
| 90 |
+
# Initialisation du store de vecteurs et peuplement
|
| 91 |
+
vector_store = None # Initialize to None
|
| 92 |
+
try:
|
| 93 |
+
vector_store = VectorStore("indian_food_embedding")
|
| 94 |
+
vector_store.populate_vectors(df)
|
| 95 |
+
print("Vector store initialized and populated.")
|
| 96 |
+
except Exception as e:
|
| 97 |
+
print(f"Error initializing or populating vector store: {e}")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# Replace the translate_text function with this new version
|
| 101 |
+
def translate_text(text, target_language='en'):
|
| 102 |
+
"""Translates the given text to the target language."""
|
| 103 |
+
try:
|
| 104 |
+
if target_language == 'en':
|
| 105 |
+
translator = GoogleTranslator(source='auto', target='en')
|
| 106 |
+
else:
|
| 107 |
+
translator = GoogleTranslator(source='en', target=target_language)
|
| 108 |
+
|
| 109 |
+
translated_text = translator.translate(text)
|
| 110 |
+
return translated_text
|
| 111 |
+
except Exception as e:
|
| 112 |
+
print(f"Translation error: {e}")
|
| 113 |
+
print(f"Detailed error: {type(e).__name__}, {e}") # Print more details for debugging.
|
| 114 |
+
return text # Return original text if translation fails
|
| 115 |
+
|
| 116 |
+
def generate_text(message, max_tokens=600, temperature=0.3, top_p=0.95,
|
| 117 |
+
gluten_free=False, dairy_free=False, allergies="", input_language='en'): # Added input_language
|
| 118 |
+
|
| 119 |
+
if llm is None:
|
| 120 |
+
return "Error: Llama model could not be loaded. Please check the console for errors."
|
| 121 |
+
|
| 122 |
+
if vector_store is None:
|
| 123 |
+
return "Error: Vector store could not be initialized. Please check the console for errors."
|
| 124 |
+
|
| 125 |
+
# Translate the input message to English
|
| 126 |
+
message_en = message
|
| 127 |
+
if input_language != 'en':
|
| 128 |
+
try:
|
| 129 |
+
message_en = translate_text(message, target_language='en')
|
| 130 |
+
except Exception as e:
|
| 131 |
+
print(f"Error translating input message: {e}")
|
| 132 |
+
return "Error translating input. Please try again in English."
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
context = ""
|
| 137 |
+
query = message_en
|
| 138 |
+
if gluten_free:
|
| 139 |
+
query += " gluten-free"
|
| 140 |
+
if dairy_free:
|
| 141 |
+
query += " dairy-free"
|
| 142 |
+
if allergies:
|
| 143 |
+
query += f" avoid ingredients: {allergies}"
|
| 144 |
+
|
| 145 |
+
try:
|
| 146 |
+
context_results = vector_store.search_context(query, n_results=1)
|
| 147 |
+
if context_results and isinstance(context_results, list):
|
| 148 |
+
context = context_results[0] if context_results else ""
|
| 149 |
+
else:
|
| 150 |
+
context = "" # or handle the error appropriately
|
| 151 |
+
print("Warning: No context found or invalid context format.")
|
| 152 |
+
except Exception as e:
|
| 153 |
+
return f"Error searching vector store: {e}"
|
| 154 |
+
|
| 155 |
+
prompt_template = (
|
| 156 |
+
f"SYSTEM: You are a helpful recipe generating bot specializing in Indian cuisine, assisting with dietary restrictions.\n"
|
| 157 |
+
f"SYSTEM: Here is some context:\n{context}\n"
|
| 158 |
+
f"USER: {message_en}\n" # Use the English translated message
|
| 159 |
+
f"ASSISTANT:\n"
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
output = llm(
|
| 164 |
+
prompt_template,
|
| 165 |
+
temperature=temperature,
|
| 166 |
+
top_p=top_p,
|
| 167 |
+
top_k=40,
|
| 168 |
+
repeat_penalty=1.1,
|
| 169 |
+
max_tokens=max_tokens,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
input_string = output['choices'][0]['text'].strip()
|
| 173 |
+
cleaned_text = input_string.strip("[]'").replace('\\n', '\n')
|
| 174 |
+
continuous_text = '\n'.join(cleaned_text.split('\n'))
|
| 175 |
+
|
| 176 |
+
# Translate the output back to the input language
|
| 177 |
+
output_text = continuous_text
|
| 178 |
+
if input_language != 'en':
|
| 179 |
+
try:
|
| 180 |
+
output_text = translate_text(continuous_text, target_language=input_language)
|
| 181 |
+
except Exception as e:
|
| 182 |
+
print(f"Error translating output message: {e}")
|
| 183 |
+
output_text = "Error translating output. Here is the English version:\n\n" + continuous_text
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
# Gluten Check on Output
|
| 187 |
+
if context and isinstance(context, str):
|
| 188 |
+
context_lower = context.lower()
|
| 189 |
+
if "gluten: yes" in context_lower:
|
| 190 |
+
output_text += "\n\nWarning: This recipe contains gluten."
|
| 191 |
+
elif "gluten: no" in context_lower:
|
| 192 |
+
output_text += "\n\nGood news! This recipe is gluten-free."
|
| 193 |
+
|
| 194 |
+
return output_text
|
| 195 |
+
|
| 196 |
+
except Exception as e:
|
| 197 |
+
return f"Error generating text: {e}"
|
| 198 |
+
|
| 199 |
+
demo = gr.Interface(
|
| 200 |
+
fn=generate_text,
|
| 201 |
+
inputs=[
|
| 202 |
+
gr.Textbox(lines=2, placeholder="Enter your message here...", label="Message"),
|
| 203 |
+
gr.Slider(minimum=50, maximum=1000, value=600, step=50, label="Max Tokens"),
|
| 204 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature"),
|
| 205 |
+
gr.Slider(minimum=0.7, maximum=1.0, value=0.95, step=0.05, label="Top P"),
|
| 206 |
+
gr.Checkbox(label="Gluten-Free"),
|
| 207 |
+
gr.Checkbox(label="Dairy-Free"),
|
| 208 |
+
gr.Textbox(lines=1, placeholder="e.g., peanuts, shellfish", label="Allergies (comma-separated)"),
|
| 209 |
+
gr.Dropdown(choices=['en', 'hi'], value='en', label="Input Language (en=English, hi=Hindi/Hinglish)"), # Added language selection
|
| 210 |
+
],
|
| 211 |
+
outputs=gr.Textbox(label="Generated Text"),
|
| 212 |
+
title="Indian Recipe Bot",
|
| 213 |
+
description="Running LLM with context retrieval from ChromaDB. Supports dietary restrictions, allergies, and Hinglish input/output!",
|
| 214 |
+
examples=[
|
| 215 |
+
["mujhe chawal aur dal hai, main kya bana sakta hoon jo gluten-free ho?", 600, 0.3, 0.95, True, False, "", 'hi'],
|
| 216 |
+
["Suggest a vegetarian dish with spinach and no nuts.", 600, 0.3, 0.95, False, False, "nuts", 'en'],
|
| 217 |
+
],
|
| 218 |
+
cache_examples=False,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
if __name__ == "__main__":
|
| 222 |
+
demo.launch()
|