Spaces:
Running
Running
File size: 7,110 Bytes
814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f 9581ef6 814316f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import streamlit as st
import pandas as pd
from huggingface_hub import InferenceClient
# Page configuration
st.set_page_config(
page_title="π LLM Data Analyzer",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
st.title("π LLM Data Analyzer")
st.write("*Analyze data and chat with AI powered by Hugging Face Inference API*")
# Initialize HF Inference Client
@st.cache_resource
def get_hf_client():
"""Get Hugging Face Inference Client"""
try:
return InferenceClient()
except Exception as e:
st.error(f"Error initializing HF client: {e}")
return None
client = get_hf_client()
if client is None:
st.error("Failed to initialize Hugging Face client")
st.stop()
# Create tabs
tab1, tab2, tab3 = st.tabs(["π€ Upload & Analyze", "π¬ Chat", "π About"])
# ============================================================================
# TAB 1: Upload & Analyze
# ============================================================================
with tab1:
st.header("π€ Upload and Analyze Data")
uploaded_file = st.file_uploader(
"Upload a CSV or Excel file",
type=["csv", "xlsx", "xls"],
help="Supported formats: CSV, Excel"
)
if uploaded_file is not None:
st.success(f"β
File uploaded: {uploaded_file.name}")
try:
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file)
else:
df = pd.read_excel(uploaded_file)
# Display data preview
st.subheader("π Data Preview")
st.dataframe(df.head(10), use_container_width=True)
# Display statistics
st.subheader("π Data Statistics")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Rows", df.shape[0])
with col2:
st.metric("Columns", df.shape[1])
with col3:
st.metric("Memory", f"{df.memory_usage(deep=True).sum() / 1024:.2f} KB")
# Detailed statistics
st.write(df.describe().T)
# Ask AI about the data
st.subheader("β Ask AI About Your Data")
question = st.text_input(
"What would you like to know about this data?",
placeholder="e.g., What is the average value in column X?"
)
if question:
with st.spinner("π€ AI is analyzing your data..."):
try:
data_summary = df.describe().to_string()
prompt = f"""You are a data analyst expert. You have the following data summary:
{data_summary}
Column names: {', '.join(df.columns.tolist())}
User's question: {question}
Please provide a clear, concise analysis based on the data summary."""
# Use Hugging Face Inference API
response = client.text_generation(
prompt,
max_new_tokens=300,
temperature=0.7,
)
st.success("β
Analysis Complete")
st.write(response)
except Exception as e:
st.error(f"Error analyzing data: {e}")
except Exception as e:
st.error(f"Error reading file: {e}")
# ============================================================================
# TAB 2: Chat
# ============================================================================
with tab2:
st.header("π¬ Chat with AI Assistant")
st.write("Have a conversation with an AI assistant powered by Hugging Face.")
# Initialize session state for chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
user_input = st.chat_input("Type your message here...")
if user_input:
# Add user message to history
st.session_state.messages.append({"role": "user", "content": user_input})
# Display user message
with st.chat_message("user"):
st.markdown(user_input)
# Generate AI response
with st.chat_message("assistant"):
with st.spinner("β³ Generating response..."):
try:
prompt = f"User: {user_input}\n\nAssistant:"
response = client.text_generation(
prompt,
max_new_tokens=300,
temperature=0.7,
)
assistant_message = response.strip()
st.markdown(assistant_message)
# Add assistant message to history
st.session_state.messages.append({
"role": "assistant",
"content": assistant_message
})
except Exception as e:
st.error(f"Error generating response: {e}")
# ============================================================================
# TAB 3: About
# ============================================================================
with tab3:
st.header("βΉοΈ About This App")
st.markdown("""
### π― What is this?
**LLM Data Analyzer** is an AI-powered tool for analyzing data and having conversations with an intelligent assistant.
### π§ Technology Stack
- **Framework:** Streamlit
- **AI Engine:** Hugging Face Inference API
- **Hosting:** Hugging Face Spaces (Free Tier)
- **Language:** Python
### β‘ Features
1. **Data Analysis**: Upload CSV/Excel and ask questions about your data
2. **Chat**: Have conversations with an AI assistant
3. **Statistics**: View data summaries and insights
### π How to Use
1. **Upload Data** - Start by uploading a CSV or Excel file
2. **Preview** - Review your data and statistics
3. **Ask Questions** - Get AI-powered analysis
4. **Chat** - Have follow-up conversations
### π Powered By
- [Hugging Face](https://huggingface.co/) - AI models and hosting
- [Streamlit](https://streamlit.io/) - Web framework
### π Quick Tips
- Keep questions focused and specific for best results
- Responses may take a few seconds
- Data is processed locally, not stored on server
### π Links
- [GitHub Repository](https://github.com/Arif-Badhon/LLM-Data-Analyzer)
- [Hugging Face Hub](https://huggingface.co/)
---
**Version:** 1.0 | **Last Updated:** Dec 2025
""") |