Update app.py
Browse files
app.py
CHANGED
|
@@ -164,11 +164,70 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
| 164 |
# if __name__ == "__main__":
|
| 165 |
# demo.launch()
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
import gradio as gr
|
| 168 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
#
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
def respond(message, history: list[tuple[str, str]]):
|
| 174 |
system_message = (
|
|
@@ -181,7 +240,7 @@ def respond(message, history: list[tuple[str, str]]):
|
|
| 181 |
temperature = 0.7
|
| 182 |
top_p = 0.95
|
| 183 |
|
| 184 |
-
# Build
|
| 185 |
messages = [{"role": "system", "content": system_message}]
|
| 186 |
for user_msg, assistant_msg in history:
|
| 187 |
if user_msg:
|
|
@@ -191,7 +250,7 @@ def respond(message, history: list[tuple[str, str]]):
|
|
| 191 |
messages.append({"role": "user", "content": message})
|
| 192 |
|
| 193 |
response = ""
|
| 194 |
-
#
|
| 195 |
for chunk in client.chat.completions.create(
|
| 196 |
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 197 |
messages=messages,
|
|
@@ -200,12 +259,11 @@ def respond(message, history: list[tuple[str, str]]):
|
|
| 200 |
temperature=temperature,
|
| 201 |
top_p=top_p,
|
| 202 |
):
|
| 203 |
-
# 3. Extract token content
|
| 204 |
token = chunk.choices[0].delta.content or ""
|
| 205 |
response += token
|
| 206 |
yield response
|
| 207 |
|
| 208 |
-
#
|
| 209 |
demo = gr.ChatInterface(respond, type="messages")
|
| 210 |
|
| 211 |
if __name__ == "__main__":
|
|
@@ -215,3 +273,4 @@ if __name__ == "__main__":
|
|
| 215 |
|
| 216 |
|
| 217 |
|
|
|
|
|
|
| 164 |
# if __name__ == "__main__":
|
| 165 |
# demo.launch()
|
| 166 |
|
| 167 |
+
# import gradio as gr
|
| 168 |
+
# from huggingface_hub import InferenceClient
|
| 169 |
+
|
| 170 |
+
# # 1. Instantiate with named model param
|
| 171 |
+
# client = InferenceClient(model="Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 172 |
+
|
| 173 |
+
# def respond(message, history: list[tuple[str, str]]):
|
| 174 |
+
# system_message = (
|
| 175 |
+
# "You are a helpful and experienced coding assistant specialized in web development. "
|
| 176 |
+
# "Help the user by generating complete and functional code for building websites. "
|
| 177 |
+
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
| 178 |
+
# "based on their requirements."
|
| 179 |
+
# )
|
| 180 |
+
# max_tokens = 2048
|
| 181 |
+
# temperature = 0.7
|
| 182 |
+
# top_p = 0.95
|
| 183 |
+
|
| 184 |
+
# # Build messages in OpenAI-compatible format
|
| 185 |
+
# messages = [{"role": "system", "content": system_message}]
|
| 186 |
+
# for user_msg, assistant_msg in history:
|
| 187 |
+
# if user_msg:
|
| 188 |
+
# messages.append({"role": "user", "content": user_msg})
|
| 189 |
+
# if assistant_msg:
|
| 190 |
+
# messages.append({"role": "assistant", "content": assistant_msg})
|
| 191 |
+
# messages.append({"role": "user", "content": message})
|
| 192 |
+
|
| 193 |
+
# response = ""
|
| 194 |
+
# # 2. Use named parameters and alias if desired
|
| 195 |
+
# for chunk in client.chat.completions.create(
|
| 196 |
+
# model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 197 |
+
# messages=messages,
|
| 198 |
+
# max_tokens=max_tokens,
|
| 199 |
+
# stream=True,
|
| 200 |
+
# temperature=temperature,
|
| 201 |
+
# top_p=top_p,
|
| 202 |
+
# ):
|
| 203 |
+
# # 3. Extract token content
|
| 204 |
+
# token = chunk.choices[0].delta.content or ""
|
| 205 |
+
# response += token
|
| 206 |
+
# yield response
|
| 207 |
+
|
| 208 |
+
# # 4. Wire up Gradio chat interface
|
| 209 |
+
# demo = gr.ChatInterface(respond, type="messages")
|
| 210 |
+
|
| 211 |
+
# if __name__ == "__main__":
|
| 212 |
+
# demo.launch()
|
| 213 |
import gradio as gr
|
| 214 |
from huggingface_hub import InferenceClient
|
| 215 |
+
from dotenv import load_dotenv
|
| 216 |
+
import os
|
| 217 |
|
| 218 |
+
# Load environment variables from .env file
|
| 219 |
+
load_dotenv()
|
| 220 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 221 |
+
|
| 222 |
+
# Ensure token is available
|
| 223 |
+
if hf_token is None:
|
| 224 |
+
raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in .env file or environment.")
|
| 225 |
+
|
| 226 |
+
# Instantiate Hugging Face Inference Client with token
|
| 227 |
+
client = InferenceClient(
|
| 228 |
+
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 229 |
+
token=hf_token
|
| 230 |
+
)
|
| 231 |
|
| 232 |
def respond(message, history: list[tuple[str, str]]):
|
| 233 |
system_message = (
|
|
|
|
| 240 |
temperature = 0.7
|
| 241 |
top_p = 0.95
|
| 242 |
|
| 243 |
+
# Build conversation history
|
| 244 |
messages = [{"role": "system", "content": system_message}]
|
| 245 |
for user_msg, assistant_msg in history:
|
| 246 |
if user_msg:
|
|
|
|
| 250 |
messages.append({"role": "user", "content": message})
|
| 251 |
|
| 252 |
response = ""
|
| 253 |
+
# Stream the response from the model
|
| 254 |
for chunk in client.chat.completions.create(
|
| 255 |
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 256 |
messages=messages,
|
|
|
|
| 259 |
temperature=temperature,
|
| 260 |
top_p=top_p,
|
| 261 |
):
|
|
|
|
| 262 |
token = chunk.choices[0].delta.content or ""
|
| 263 |
response += token
|
| 264 |
yield response
|
| 265 |
|
| 266 |
+
# Gradio UI
|
| 267 |
demo = gr.ChatInterface(respond, type="messages")
|
| 268 |
|
| 269 |
if __name__ == "__main__":
|
|
|
|
| 273 |
|
| 274 |
|
| 275 |
|
| 276 |
+
|