Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,31 +8,39 @@ from scipy.io.wavfile import write
|
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
from transformers import pipeline
|
| 10 |
from pathlib import Path
|
|
|
|
|
|
|
| 11 |
|
| 12 |
load_dotenv()
|
| 13 |
hf_token = os.getenv("HF_TKN")
|
| 14 |
|
| 15 |
device_id = 0 if torch.cuda.is_available() else -1
|
| 16 |
|
|
|
|
| 17 |
captioning_pipeline = pipeline(
|
| 18 |
"image-to-text",
|
| 19 |
-
model="Salesforce/blip-image-captioning-large",
|
| 20 |
device=device_id
|
| 21 |
)
|
| 22 |
|
|
|
|
| 23 |
pipe = DiffusionPipeline.from_pretrained(
|
| 24 |
"cvssp/audioldm2",
|
| 25 |
use_auth_token=hf_token
|
| 26 |
)
|
| 27 |
|
|
|
|
|
|
|
| 28 |
@spaces.GPU(duration=120)
|
| 29 |
-
def analyze_image_with_free_model(
|
| 30 |
try:
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
if not results or not isinstance(results, list):
|
| 37 |
return "Error: Could not generate caption.", True
|
| 38 |
|
|
@@ -42,8 +50,10 @@ def analyze_image_with_free_model(image_file):
|
|
| 42 |
return caption, False
|
| 43 |
|
| 44 |
except Exception as e:
|
|
|
|
| 45 |
return f"Error analyzing image: {e}", True
|
| 46 |
|
|
|
|
| 47 |
@spaces.GPU(duration=120)
|
| 48 |
def get_audioldm_from_caption(caption):
|
| 49 |
try:
|
|
@@ -64,6 +74,7 @@ def get_audioldm_from_caption(caption):
|
|
| 64 |
print(f"Error generating audio from caption: {e}")
|
| 65 |
return None
|
| 66 |
|
|
|
|
| 67 |
css = """
|
| 68 |
#col-container{
|
| 69 |
margin: 0 auto;
|
|
@@ -116,9 +127,11 @@ with gr.Blocks(css=css) as demo:
|
|
| 116 |
This app is a testament to the creative possibilities that emerge when technology meets art.
|
| 117 |
Enjoy exploring the auditory landscape of your images!
|
| 118 |
""")
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
| 122 |
return description
|
| 123 |
|
| 124 |
def generate_sound(description):
|
|
|
|
| 8 |
from diffusers import DiffusionPipeline
|
| 9 |
from transformers import pipeline
|
| 10 |
from pathlib import Path
|
| 11 |
+
from PIL import Image # <-- ADDED THIS IMPORT
|
| 12 |
+
import io # <-- ADDED THIS IMPORT
|
| 13 |
|
| 14 |
load_dotenv()
|
| 15 |
hf_token = os.getenv("HF_TKN")
|
| 16 |
|
| 17 |
device_id = 0 if torch.cuda.is_available() else -1
|
| 18 |
|
| 19 |
+
# Correctly initialize the modern, reliable captioning pipeline
|
| 20 |
captioning_pipeline = pipeline(
|
| 21 |
"image-to-text",
|
| 22 |
+
model="Salesforce/blip-image-captioning-large",
|
| 23 |
device=device_id
|
| 24 |
)
|
| 25 |
|
| 26 |
+
# Initialize the audio pipeline
|
| 27 |
pipe = DiffusionPipeline.from_pretrained(
|
| 28 |
"cvssp/audioldm2",
|
| 29 |
use_auth_token=hf_token
|
| 30 |
)
|
| 31 |
|
| 32 |
+
|
| 33 |
+
# === THIS IS THE CORRECTED FUNCTION ===
|
| 34 |
@spaces.GPU(duration=120)
|
| 35 |
+
def analyze_image_with_free_model(image_file_bytes):
|
| 36 |
try:
|
| 37 |
+
# No more temp files!
|
| 38 |
+
# Open the image data directly from memory using Pillow
|
| 39 |
+
image = Image.open(io.BytesIO(image_file_bytes))
|
| 40 |
|
| 41 |
+
# Pass the Pillow Image object directly to the pipeline. This is the robust method.
|
| 42 |
+
results = captioning_pipeline(image)
|
| 43 |
+
|
| 44 |
if not results or not isinstance(results, list):
|
| 45 |
return "Error: Could not generate caption.", True
|
| 46 |
|
|
|
|
| 50 |
return caption, False
|
| 51 |
|
| 52 |
except Exception as e:
|
| 53 |
+
print(f"ERROR in analyze_image_with_free_model: {e}") # Print error to logs
|
| 54 |
return f"Error analyzing image: {e}", True
|
| 55 |
|
| 56 |
+
|
| 57 |
@spaces.GPU(duration=120)
|
| 58 |
def get_audioldm_from_caption(caption):
|
| 59 |
try:
|
|
|
|
| 74 |
print(f"Error generating audio from caption: {e}")
|
| 75 |
return None
|
| 76 |
|
| 77 |
+
# --- Gradio UI (No changes needed here) ---
|
| 78 |
css = """
|
| 79 |
#col-container{
|
| 80 |
margin: 0 auto;
|
|
|
|
| 127 |
This app is a testament to the creative possibilities that emerge when technology meets art.
|
| 128 |
Enjoy exploring the auditory landscape of your images!
|
| 129 |
""")
|
| 130 |
+
|
| 131 |
+
# --- Gradio event handlers (I've updated the function called here) ---
|
| 132 |
+
def update_caption(image_file_bytes):
|
| 133 |
+
# We pass the bytes from the uploader directly to our corrected function
|
| 134 |
+
description, _ = analyze_image_with_free_model(image_file_bytes)
|
| 135 |
return description
|
| 136 |
|
| 137 |
def generate_sound(description):
|