FLUX.1-schnell / app.py
BLUE STRIKE AI
Update app.py
b9793ef verified
import os
from huggingface_hub import login, hf_hub_download
import onnxruntime as ort
import numpy as np
import gradio as gr
# Securely get your HF token from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable with your Hugging Face token.")
login(token=HF_TOKEN)
repo_id = "black-forest-labs/FLUX.1-schnell-onnx"
model_filename = "t5-fp8.opt/model.onnx"
model_path = hf_hub_download(repo_id=repo_id, filename=model_filename, token=HF_TOKEN)
session = ort.InferenceSession(model_path)
def generate_image_from_text(prompt: str):
# Implement your tokenizer and inference logic here...
input_tokens = np.array([1, 2, 3, 4], dtype=np.int64)
outputs = session.run(None, {"input": input_tokens})
image_array = outputs[0]
image_array = np.clip(image_array, 0, 1)
image = (image_array * 255).astype(np.uint8)
image = np.transpose(image, (1, 2, 0))
return image
with gr.Blocks() as demo:
gr.Markdown("## FLUX.1 ONNX Text-to-Image Generator")
text_input = gr.Textbox(label="Enter your text prompt", lines=2)
output_image = gr.Image(label="Generated Image")
btn = gr.Button("Generate")
btn.click(fn=generate_image_from_text, inputs=text_input, outputs=output_image)
if __name__ == "__main__":
demo.launch()