Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,940 Bytes
018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 fb7858e 018b8c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import os
from collections.abc import Iterator
import gradio as gr
from gradio import ChatMessage
from cohere import ClientV2
from cohere.core import RequestOptions
model_id = "command-a-reasoning-08-2025"
# Initialize Cohere client
api_key = os.getenv("COHERE_API_KEY")
if not api_key:
raise ValueError("COHERE_API_KEY environment variable is required")
client = ClientV2(api_key=api_key, client_name="hf-command-a-reasoning-08-2025")
def format_chat_history(messages: list) -> list:
"""
Formats the chat history into a structure Cohere can understand
"""
formatted_history = []
for message in messages:
# Handle both ChatMessage objects and regular dictionaries
if hasattr(message, "metadata") and message.metadata:
# Skip thinking messages (messages with metadata)
continue
# Extract role and content safely
if hasattr(message, "role"):
role = message.role
content = message.content
elif isinstance(message, dict):
role = message.get("role")
content = message.get("content")
else:
continue
if role and content:
# Ensure content is a string to prevent validation issues
if content is None:
content = ""
elif not isinstance(content, str):
content = str(content)
formatted_history.append({
"role": role,
"content": content
})
return formatted_history
def generate(message: str, history: list, thinking_budget: int) -> Iterator[list]:
# Create a clean working copy of the history (excluding thinking messages)
working_history = []
for msg in history:
# Skip thinking messages (messages with metadata)
if hasattr(msg, "metadata") and msg.metadata:
continue
working_history.append(msg)
# Format chat history for Cohere API (exclude thinking messages)
messages = format_chat_history(working_history)
# Add current message
if message:
messages.append({"role": "user", "content": message})
try:
# Set thinking type based on thinking_budget
if thinking_budget == 0:
thinking_param = {"type": "disabled"}
else:
thinking_param = {"type": "enabled", "token_budget": thinking_budget}
# Call Cohere API using the correct event type and delta access
response = client.chat_stream(
model=model_id,
messages=messages,
temperature=0.3,
request_options=RequestOptions(additional_body_parameters={"thinking": thinking_param})
)
# Initialize buffers
thought_buffer = ""
response_buffer = ""
thinking_complete = False
# Start with just the new assistant messages for this interaction
current_interaction = [
ChatMessage(
role="assistant",
content="",
metadata={"title": "🧠 Thinking..."}
)
]
for event in response:
if getattr(event, "type", None) == "content-delta":
delta = event.delta
if hasattr(delta, 'message'):
message = delta.message
if hasattr(message, 'content'):
content = message.content
# Check for thinking tokens first
thinking_text = getattr(content, 'thinking', None)
if thinking_text:
thought_buffer += thinking_text
# Update thinking message with metadata
current_interaction[0] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "🧠 Thinking..."}
)
# Yield only the current interaction, but ensure proper formatting
yield [
{
"role": msg.role,
"content": msg.content,
"metadata": getattr(msg, "metadata", None)
} for msg in current_interaction
]
continue
# Check for regular text tokens
text = getattr(content, 'text', None)
if text:
# Ensure text is a string
if text is None:
text = ""
elif not isinstance(text, str):
text = str(text)
# If we haven't completed thinking yet, this might be the start of the response
if not thinking_complete and thought_buffer:
thinking_complete = True
# Add response message below thinking
current_interaction.append(
ChatMessage(
role="assistant",
content=""
)
)
if thinking_complete:
# if thinking is complete, we collapse the thinking message
current_interaction[0] = ChatMessage(
role="assistant",
content=thought_buffer,
metadata={"title": "🧠 Thoughts", "status": "done"}
)
response_buffer += text
# Update response message
current_interaction[-1] = ChatMessage(
role="assistant",
content=response_buffer
)
# Yield only the current interaction, but ensure proper formatting
yield [
{
"role": msg.role,
"content": msg.content,
"metadata": getattr(msg, "metadata", None)
} for msg in current_interaction
]
# Final cleanup: ensure the final response is clean
if thought_buffer and response_buffer:
# Keep both thinking and response messages in the final history
# The thinking message will be preserved with its metadata
pass
except Exception as e:
gr.Warning(f"Error calling Cohere API: {str(e)}")
yield []
examples = [
[
"Write a COBOL function to reverse a string"
],
[
"Como sair de um helicóptero que caiu na água?"
],
[
"What is the best way to learn machine learning?"
],
[
"Explain quantum computing in simple terms"
],
[
"How do I implement a binary search tree?"
],
[
"Explique la théorie de la relativité en français"
],
]
demo = gr.ChatInterface(
fn=generate,
type="messages",
autofocus=True,
title="Command A Reasoning",
examples=examples,
run_examples_on_click=True,
css_paths="style.css",
delete_cache=(1800, 1800),
cache_examples=False,
additional_inputs=[
gr.Slider(label="Thinking Budget", minimum=0, maximum=2000, step=10, value=500),
],
)
if __name__ == "__main__":
demo.launch()
|