Spaces:
Runtime error
Runtime error
| import os | |
| import copy | |
| from PIL import Image | |
| import matplotlib | |
| import numpy as np | |
| import gradio as gr | |
| from utils import load_mask, load_mask_edit | |
| from utils_mask import process_mask_to_follow_priority, mask_union, visualize_mask_list_clean | |
| from pathlib import Path | |
| import subprocess | |
| from PIL import Image | |
| LENGTH=512 #length of the square area displaying/editing images | |
| TRANSPARENCY = 150 # transparency of the mask in display | |
| def add_mask(mask_np_list_updated, mask_label_list): | |
| mask_new = np.zeros_like(mask_np_list_updated[0]) | |
| mask_np_list_updated.append(mask_new) | |
| mask_label_list.append("new") | |
| return mask_np_list_updated, mask_label_list | |
| def create_segmentation(mask_np_list): | |
| viridis = matplotlib.pyplot.get_cmap(name = 'viridis', lut = len(mask_np_list)) | |
| segmentation = 0 | |
| for i, m in enumerate(mask_np_list): | |
| color = matplotlib.colors.to_rgb(viridis(i)) | |
| color_mat = np.ones_like(m) | |
| color_mat = np.stack([color_mat*color[0], color_mat*color[1],color_mat*color[2] ], axis = 2) | |
| color_mat = color_mat * m[:,:,np.newaxis] | |
| segmentation += color_mat | |
| segmentation = Image.fromarray(np.uint8(segmentation*255)) | |
| return segmentation | |
| def load_mask_ui(input_folder,load_edit = False): | |
| if not load_edit: | |
| mask_list, mask_label_list = load_mask(input_folder) | |
| else: | |
| mask_list, mask_label_list = load_mask_edit(input_folder) | |
| mask_np_list = [] | |
| for m in mask_list: | |
| mask_np_list. append( m.cpu().numpy()) | |
| return mask_np_list, mask_label_list | |
| def load_image_ui(input_folder, load_edit): | |
| try: | |
| for img_path in Path(input_folder).iterdir(): | |
| if img_path.name in ["img.png", "img_1024.png", "img_512.png"]: | |
| image = Image.open(img_path) | |
| mask_np_list, mask_label_list = load_mask_ui(input_folder, load_edit = load_edit) | |
| image = image.convert('RGB') | |
| segmentation = create_segmentation(mask_np_list) | |
| return image, segmentation, mask_np_list, mask_label_list, image | |
| except: | |
| print("Image folder invalid: The folder should contain image.png") | |
| return None, None, None, None, None | |
| def run_segmentation(input_folder): | |
| subprocess.run(["python", "segment.py" , "--name={}".format(input_folder)]) | |
| return | |
| def run_edit_text( | |
| input_folder, | |
| num_tokens, | |
| num_sampling_steps, | |
| strength, | |
| edge_thickness, | |
| tgt_prompt, | |
| tgt_idx, | |
| guidance_scale | |
| ): | |
| subprocess.run(["python", | |
| "main.py" , | |
| "--text", | |
| "--name={}".format(input_folder), | |
| "--dpm={}".format("sd"), | |
| "--resolution={}".format(512), | |
| "--load_trained", | |
| "--num_tokens={}".format(num_tokens), | |
| "--seed={}".format(2024), | |
| "--guidance_scale={}".format(guidance_scale), | |
| "--num_sampling_step={}".format(num_sampling_steps), | |
| "--strength={}".format(strength), | |
| "--edge_thickness={}".format(edge_thickness), | |
| "--num_imgs={}".format(2), | |
| "--tgt_prompt={}".format(tgt_prompt) , | |
| "--tgt_index={}".format(tgt_idx) | |
| ]) | |
| return Image.open(os.path.join(input_folder, "text", "out_text_0.png")) | |
| def run_optimization( | |
| input_folder, | |
| num_tokens, | |
| embedding_learning_rate, | |
| max_emb_train_steps, | |
| diffusion_model_learning_rate, | |
| max_diffusion_train_steps, | |
| train_batch_size, | |
| gradient_accumulation_steps | |
| ): | |
| subprocess.run(["python", | |
| "main.py" , | |
| "--name={}".format(input_folder), | |
| "--dpm={}".format("sd"), | |
| "--resolution={}".format(512), | |
| "--num_tokens={}".format(num_tokens), | |
| "--embedding_learning_rate={}".format(embedding_learning_rate), | |
| "--diffusion_model_learning_rate={}".format(diffusion_model_learning_rate), | |
| "--max_emb_train_steps={}".format(max_emb_train_steps), | |
| "--max_diffusion_train_steps={}".format(max_diffusion_train_steps), | |
| "--train_batch_size={}".format(train_batch_size), | |
| "--gradient_accumulation_steps={}".format(gradient_accumulation_steps) | |
| ]) | |
| return | |
| def transparent_paste_with_mask(backimg, foreimg, mask_np,transparency = 128): | |
| backimg_solid_np = np.array(backimg) | |
| bimg = backimg.copy() | |
| fimg = foreimg.copy() | |
| fimg.putalpha(transparency) | |
| bimg.paste(fimg, (0,0), fimg) | |
| bimg_np = np.array(bimg) | |
| mask_np = mask_np[:,:,np.newaxis] | |
| try: | |
| new_img_np = bimg_np*mask_np + (1-mask_np)* backimg_solid_np | |
| return Image.fromarray(new_img_np) | |
| except: | |
| import pdb; pdb.set_trace() | |
| def show_segmentation(image, segmentation, flag): | |
| if flag is False: | |
| flag = True | |
| mask_np = np.ones([image.size[0],image.size[1]]).astype(np.uint8) | |
| image_edit = transparent_paste_with_mask(image, segmentation, mask_np ,transparency = TRANSPARENCY) | |
| return image_edit, flag | |
| else: | |
| flag = False | |
| return image,flag | |
| def edit_mask_add(canvas, image, idx, mask_np_list): | |
| mask_sel = mask_np_list[idx] | |
| mask_new = np.uint8(canvas["mask"][:, :, 0]/ 255.) | |
| mask_np_list_updated = [] | |
| for midx, m in enumerate(mask_np_list): | |
| if midx == idx: | |
| mask_np_list_updated.append(mask_union(mask_sel, mask_new)) | |
| else: | |
| mask_np_list_updated.append(m) | |
| priority_list = [0 for _ in range(len(mask_np_list_updated))] | |
| priority_list[idx] = 1 | |
| mask_np_list_updated = process_mask_to_follow_priority(mask_np_list_updated, priority_list) | |
| mask_ones = np.ones([mask_sel.shape[0], mask_sel.shape[1]]).astype(np.uint8) | |
| segmentation = create_segmentation(mask_np_list_updated) | |
| image_edit = transparent_paste_with_mask(image, segmentation, mask_ones ,transparency = TRANSPARENCY) | |
| return mask_np_list_updated, image_edit | |
| def slider_release(index, image, mask_np_list_updated, mask_label_list): | |
| if index > len(mask_np_list_updated): | |
| return image, "out of range" | |
| else: | |
| mask_np = mask_np_list_updated[index] | |
| mask_label = mask_label_list[index] | |
| segmentation = create_segmentation(mask_np_list_updated) | |
| new_image = transparent_paste_with_mask(image, segmentation, mask_np, transparency = TRANSPARENCY) | |
| return new_image, mask_label | |
| def save_as_orig_mask(mask_np_list_updated, mask_label_list, input_folder): | |
| try: | |
| assert np.all(sum(mask_np_list_updated)==1) | |
| except: | |
| print("please check mask") | |
| # plt.imsave( "out_mask.png", mask_list_edit[0]) | |
| import pdb; pdb.set_trace() | |
| for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)): | |
| # np.save(os.path.join(input_folder, "maskEDIT{}_{}.npy".format(midx, mask_label)),mask ) | |
| np.save(os.path.join(input_folder, "mask{}_{}.npy".format(midx, mask_label)),mask ) | |
| savepath = os.path.join(input_folder, "seg_current.png") | |
| visualize_mask_list_clean(mask_np_list_updated, savepath) | |
| def save_as_edit_mask(mask_np_list_updated, mask_label_list, input_folder): | |
| try: | |
| assert np.all(sum(mask_np_list_updated)==1) | |
| except: | |
| print("please check mask") | |
| # plt.imsave( "out_mask.png", mask_list_edit[0]) | |
| import pdb; pdb.set_trace() | |
| for midx, (mask, mask_label) in enumerate(zip(mask_np_list_updated, mask_label_list)): | |
| np.save(os.path.join(input_folder, "maskEdited{}_{}.npy".format(midx, mask_label)), mask) | |
| savepath = os.path.join(input_folder, "seg_edited.png") | |
| visualize_mask_list_clean(mask_np_list_updated, savepath) | |
| with gr.Blocks() as demo: | |
| image = gr.State() # store mask | |
| image_loaded = gr.State() | |
| segmentation = gr.State() | |
| mask_np_list = gr.State([]) | |
| mask_label_list = gr.State([]) | |
| mask_np_list_updated = gr.State([]) | |
| true = gr.State(True) | |
| false = gr.State(False) | |
| with gr.Row(): | |
| gr.Markdown("""# D-Edit""") | |
| with gr.Tab(label="1 Edit mask"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| canvas = gr.Image(value = None, type="numpy", tool="sketch", label="Draw Mask", show_label=True, height=LENGTH, width=LENGTH, interactive=True) | |
| input_folder = gr.Textbox(value="example1", label="input folder", interactive= True, ) | |
| segment_button = gr.Button("1.1 Run segmentation") | |
| segment_button.click(run_segmentation, | |
| [input_folder] , | |
| [] ) | |
| text_button = gr.Button("1.2 Load original masks") | |
| text_button.click(load_image_ui, | |
| [input_folder, false] , | |
| [image_loaded, segmentation, mask_np_list, mask_label_list, canvas] ) | |
| load_edit_button = gr.Button("1.2 Load edited masks") | |
| load_edit_button.click(load_image_ui, | |
| [input_folder, true] , | |
| [image_loaded, segmentation, mask_np_list, mask_label_list, canvas] ) | |
| show_segment = gr.Checkbox(label = "Show Segmentation") | |
| flag = gr.State(False) | |
| show_segment.select(show_segmentation, | |
| [image_loaded, segmentation, flag], | |
| [canvas, flag]) | |
| mask_np_list_updated = copy.deepcopy(mask_np_list) | |
| with gr.Column(): | |
| gr.Markdown("""<p style="text-align: center; font-size: 20px">Draw Mask</p>""") | |
| slider = gr.Slider(0, 20, step=1, interactive=True) | |
| label = gr.Textbox() | |
| slider.release(slider_release, | |
| inputs = [slider, image_loaded, mask_np_list_updated, mask_label_list], | |
| outputs= [canvas, label] | |
| ) | |
| add_button = gr.Button("Add") | |
| add_button.click( edit_mask_add, | |
| [canvas, image_loaded, slider, mask_np_list_updated] , | |
| [mask_np_list_updated, canvas] | |
| ) | |
| save_button2 = gr.Button("Set and Save as edited masks") | |
| save_button2.click( save_as_edit_mask, | |
| [mask_np_list_updated, mask_label_list, input_folder] , | |
| [] ) | |
| save_button = gr.Button("Set and Save as original masks") | |
| save_button.click( save_as_orig_mask, | |
| [mask_np_list_updated, mask_label_list, input_folder] , | |
| [] ) | |
| back_button = gr.Button("Back to current seg") | |
| back_button.click( load_mask_ui, | |
| [input_folder] , | |
| [ mask_np_list_updated,mask_label_list] ) | |
| add_mask_button = gr.Button("Add new empty mask") | |
| add_mask_button.click(add_mask, | |
| [mask_np_list_updated, mask_label_list] , | |
| [mask_np_list_updated, mask_label_list] ) | |
| with gr.Tab(label="2 Optimization"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| canvas_opt = gr.Image(value = canvas.value, type="pil", tool="sketch", label="Loaded Image", show_label=True, height=LENGTH, width=LENGTH, interactive=True) | |
| with gr.Column(): | |
| gr.Markdown("""<p style="text-align: center; font-size: 20px">Optimization settings (SD)</p>""") | |
| num_tokens = gr.Textbox(value="5", label="num tokens to represent each object", interactive= True) | |
| embedding_learning_rate = gr.Textbox(value="1e-4", label="Embedding optimization: Learning rate", interactive= True ) | |
| max_emb_train_steps = gr.Textbox(value="500", label="embedding optimization: Training steps", interactive= True ) | |
| diffusion_model_learning_rate = gr.Textbox(value="5e-5", label="UNet Optimization: Learning rate", interactive= True ) | |
| max_diffusion_train_steps = gr.Textbox(value="500", label="UNet Optimization: Learning rate: Training steps", interactive= True ) | |
| train_batch_size = gr.Textbox(value="5", label="Batch size", interactive= True ) | |
| gradient_accumulation_steps=gr.Textbox(value="5", label="Gradient accumulation", interactive= True ) | |
| add_button = gr.Button("Run optimization") | |
| add_button.click(run_optimization, | |
| inputs = [ | |
| input_folder, | |
| num_tokens, | |
| embedding_learning_rate, | |
| max_emb_train_steps, | |
| diffusion_model_learning_rate, | |
| max_diffusion_train_steps, | |
| train_batch_size,gradient_accumulation_steps | |
| ], | |
| outputs = [] | |
| ) | |
| with gr.Tab(label="3 Editing"): | |
| with gr.Tab(label="3.1 Text-based editing"): | |
| canvas_text_edit = gr.State() # store mask | |
| with gr.Row(): | |
| with gr.Column(): | |
| canvas_text_edit = gr.Image(value = None, label="Editing results", show_label=True, height=LENGTH, width=LENGTH) | |
| # canvas_text_edit = gr.Gallery(label = "Edited results") | |
| with gr.Column(): | |
| gr.Markdown("""<p style="text-align: center; font-size: 20px">Editing setting (SD)</p>""") | |
| tgt_prompt = gr.Textbox(value="Dog", label="Editing: Text prompt", interactive= True ) | |
| tgt_idx = gr.Textbox(value="0", label="Editing: Object index", interactive= True ) | |
| guidance_scale = gr.Textbox(value="6", label="Editing: CFG guidance scale", interactive= True ) | |
| num_sampling_steps = gr.Textbox(value="50", label="Editing: Sampling steps", interactive= True ) | |
| edge_thickness = gr.Textbox(value="10", label="Editing: Edge thickness", interactive= True ) | |
| strength = gr.Textbox(value="0.5", label="Editing: Mask strength", interactive= True ) | |
| add_button = gr.Button("Run Editing") | |
| add_button.click(run_edit_text, | |
| inputs = [ | |
| input_folder, | |
| num_tokens, | |
| num_sampling_steps, | |
| strength, | |
| edge_thickness, | |
| tgt_prompt, | |
| tgt_idx, | |
| guidance_scale | |
| ], | |
| outputs = [canvas_text_edit] | |
| ) | |
| demo.queue().launch(share=True, debug=True) | |