Spaces:
Running
Running
Commit
·
8e9e85e
1
Parent(s):
8fcb613
Merge exp/tts-modal-env: Add TTS AudioRefiner with LLM polish, Modal deployment, and async fixes
Browse files- .gitignore +3 -0
- deployments/README.md +46 -0
- deployments/modal_tts.py +101 -0
- dev/__init__.py +0 -1
- src/agents/audio_refiner.py +397 -0
- src/app.py +28 -10
- src/services/audio_processing.py +14 -2
- src/services/tts_modal.py +144 -95
- src/utils/config.py +4 -0
- tests/unit/agents/test_audio_refiner.py +306 -0
.gitignore
CHANGED
|
@@ -57,6 +57,9 @@ reference_repos/DeepCritical/
|
|
| 57 |
# Keep the README in reference_repos
|
| 58 |
!reference_repos/README.md
|
| 59 |
|
|
|
|
|
|
|
|
|
|
| 60 |
# OS
|
| 61 |
.DS_Store
|
| 62 |
Thumbs.db
|
|
|
|
| 57 |
# Keep the README in reference_repos
|
| 58 |
!reference_repos/README.md
|
| 59 |
|
| 60 |
+
# Development directory
|
| 61 |
+
dev/
|
| 62 |
+
|
| 63 |
# OS
|
| 64 |
.DS_Store
|
| 65 |
Thumbs.db
|
deployments/README.md
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Deployments
|
| 2 |
+
|
| 3 |
+
This directory contains infrastructure deployment scripts for DeepCritical services.
|
| 4 |
+
|
| 5 |
+
## Modal Deployments
|
| 6 |
+
|
| 7 |
+
### TTS Service (`modal_tts.py`)
|
| 8 |
+
|
| 9 |
+
Deploys the Kokoro TTS (Text-to-Speech) function to Modal's GPU infrastructure.
|
| 10 |
+
|
| 11 |
+
**Deploy:**
|
| 12 |
+
```bash
|
| 13 |
+
modal deploy deployments/modal_tts.py
|
| 14 |
+
```
|
| 15 |
+
|
| 16 |
+
**Features:**
|
| 17 |
+
- Kokoro 82M TTS model
|
| 18 |
+
- GPU-accelerated (T4)
|
| 19 |
+
- Voice options: af_heart, af_bella, am_michael, etc.
|
| 20 |
+
- Configurable speech speed
|
| 21 |
+
|
| 22 |
+
**Requirements:**
|
| 23 |
+
- Modal account and credentials (`MODAL_TOKEN_ID`, `MODAL_TOKEN_SECRET` in `.env`)
|
| 24 |
+
- GPU quota on Modal
|
| 25 |
+
|
| 26 |
+
**After Deployment:**
|
| 27 |
+
The function will be available at:
|
| 28 |
+
- App: `deepcritical-tts`
|
| 29 |
+
- Function: `kokoro_tts_function`
|
| 30 |
+
|
| 31 |
+
The main application (`src/services/tts_modal.py`) will call this deployed function.
|
| 32 |
+
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
## Adding New Deployments
|
| 36 |
+
|
| 37 |
+
When adding new deployment scripts:
|
| 38 |
+
|
| 39 |
+
1. Create a new file: `deployments/<service_name>.py`
|
| 40 |
+
2. Use Modal's app pattern:
|
| 41 |
+
```python
|
| 42 |
+
import modal
|
| 43 |
+
app = modal.App("deepcritical-<service-name>")
|
| 44 |
+
```
|
| 45 |
+
3. Document in this README
|
| 46 |
+
4. Test deployment: `modal deploy deployments/<service_name>.py`
|
deployments/modal_tts.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Deploy Kokoro TTS function to Modal.
|
| 2 |
+
|
| 3 |
+
This script deploys the TTS function to Modal so it can be called
|
| 4 |
+
from the main DeepCritical application.
|
| 5 |
+
|
| 6 |
+
Usage:
|
| 7 |
+
modal deploy deploy_modal_tts.py
|
| 8 |
+
|
| 9 |
+
After deployment, the function will be available at:
|
| 10 |
+
App: deepcritical-tts
|
| 11 |
+
Function: kokoro_tts_function
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
import modal
|
| 15 |
+
import numpy as np
|
| 16 |
+
|
| 17 |
+
# Create Modal app
|
| 18 |
+
app = modal.App("deepcritical-tts")
|
| 19 |
+
|
| 20 |
+
# Define Kokoro TTS dependencies
|
| 21 |
+
KOKORO_DEPENDENCIES = [
|
| 22 |
+
"torch>=2.0.0",
|
| 23 |
+
"transformers>=4.30.0",
|
| 24 |
+
"numpy<2.0",
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
# Create Modal image with Kokoro
|
| 28 |
+
tts_image = (
|
| 29 |
+
modal.Image.debian_slim(python_version="3.11")
|
| 30 |
+
.apt_install("git") # Install git first for pip install from github
|
| 31 |
+
.pip_install(*KOKORO_DEPENDENCIES)
|
| 32 |
+
.pip_install("git+https://github.com/hexgrad/kokoro.git")
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
@app.function(
|
| 37 |
+
image=tts_image,
|
| 38 |
+
gpu="T4",
|
| 39 |
+
timeout=60,
|
| 40 |
+
)
|
| 41 |
+
def kokoro_tts_function(text: str, voice: str, speed: float) -> tuple[int, np.ndarray]:
|
| 42 |
+
"""Modal GPU function for Kokoro TTS.
|
| 43 |
+
|
| 44 |
+
This function runs on Modal's GPU infrastructure.
|
| 45 |
+
Based on: https://huggingface.co/spaces/hexgrad/Kokoro-TTS
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
text: Text to synthesize
|
| 49 |
+
voice: Voice ID (e.g., af_heart, af_bella, am_michael)
|
| 50 |
+
speed: Speech speed multiplier (0.5-2.0)
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
Tuple of (sample_rate, audio_array)
|
| 54 |
+
"""
|
| 55 |
+
import numpy as np
|
| 56 |
+
|
| 57 |
+
try:
|
| 58 |
+
import torch
|
| 59 |
+
from kokoro import KModel, KPipeline
|
| 60 |
+
|
| 61 |
+
# Initialize model (cached on GPU)
|
| 62 |
+
model = KModel().to("cuda").eval()
|
| 63 |
+
pipeline = KPipeline(lang_code=voice[0])
|
| 64 |
+
pack = pipeline.load_voice(voice)
|
| 65 |
+
|
| 66 |
+
# Generate audio - accumulate all chunks
|
| 67 |
+
audio_chunks = []
|
| 68 |
+
for _, ps, _ in pipeline(text, voice, speed):
|
| 69 |
+
ref_s = pack[len(ps) - 1]
|
| 70 |
+
audio = model(ps, ref_s, speed)
|
| 71 |
+
audio_chunks.append(audio.numpy())
|
| 72 |
+
|
| 73 |
+
# Concatenate all audio chunks
|
| 74 |
+
if audio_chunks:
|
| 75 |
+
full_audio = np.concatenate(audio_chunks)
|
| 76 |
+
return (24000, full_audio)
|
| 77 |
+
|
| 78 |
+
# If no audio generated, return empty
|
| 79 |
+
return (24000, np.zeros(1, dtype=np.float32))
|
| 80 |
+
|
| 81 |
+
except ImportError as e:
|
| 82 |
+
raise RuntimeError(
|
| 83 |
+
f"Kokoro not installed: {e}. "
|
| 84 |
+
"Install with: pip install git+https://github.com/hexgrad/kokoro.git"
|
| 85 |
+
) from e
|
| 86 |
+
except Exception as e:
|
| 87 |
+
raise RuntimeError(f"TTS synthesis failed: {e}") from e
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# Optional: Add a test entrypoint
|
| 91 |
+
@app.local_entrypoint()
|
| 92 |
+
def test():
|
| 93 |
+
"""Test the TTS function."""
|
| 94 |
+
print("Testing Modal TTS function...")
|
| 95 |
+
sample_rate, audio = kokoro_tts_function.remote(
|
| 96 |
+
"Hello, this is a test.",
|
| 97 |
+
"af_heart",
|
| 98 |
+
1.0
|
| 99 |
+
)
|
| 100 |
+
print(f"Generated audio: {sample_rate}Hz, shape={audio.shape}")
|
| 101 |
+
print("✓ TTS function works!")
|
dev/__init__.py
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
"""Development utilities and plugins."""
|
|
|
|
|
|
src/agents/audio_refiner.py
ADDED
|
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Audio Refiner Agent - Cleans markdown reports for TTS audio clarity.
|
| 2 |
+
|
| 3 |
+
This agent transforms markdown-formatted research reports into clean,
|
| 4 |
+
audio-friendly plain text suitable for text-to-speech synthesis.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import re
|
| 8 |
+
from typing import Optional
|
| 9 |
+
|
| 10 |
+
import structlog
|
| 11 |
+
from pydantic_ai import Agent
|
| 12 |
+
|
| 13 |
+
from src.utils.llm_factory import get_pydantic_ai_model
|
| 14 |
+
|
| 15 |
+
logger = structlog.get_logger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class AudioRefiner:
|
| 19 |
+
"""Refines markdown reports for optimal TTS audio output.
|
| 20 |
+
|
| 21 |
+
Handles common formatting issues that make text difficult to listen to:
|
| 22 |
+
- Markdown syntax (headers, bold, italic, links)
|
| 23 |
+
- Citations and reference markers
|
| 24 |
+
- Roman numerals in medical contexts
|
| 25 |
+
- Multiple References sections
|
| 26 |
+
- Special characters and formatting artifacts
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
# Roman numeral to integer mapping
|
| 30 |
+
ROMAN_VALUES = {
|
| 31 |
+
'I': 1, 'V': 5, 'X': 10, 'L': 50,
|
| 32 |
+
'C': 100, 'D': 500, 'M': 1000
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
# Number to word mapping (1-20, common in medical literature)
|
| 36 |
+
NUMBER_TO_WORD = {
|
| 37 |
+
1: 'One', 2: 'Two', 3: 'Three', 4: 'Four', 5: 'Five',
|
| 38 |
+
6: 'Six', 7: 'Seven', 8: 'Eight', 9: 'Nine', 10: 'Ten',
|
| 39 |
+
11: 'Eleven', 12: 'Twelve', 13: 'Thirteen', 14: 'Fourteen',
|
| 40 |
+
15: 'Fifteen', 16: 'Sixteen', 17: 'Seventeen', 18: 'Eighteen',
|
| 41 |
+
19: 'Nineteen', 20: 'Twenty'
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
async def refine_for_audio(self, markdown_text: str, use_llm_polish: bool = False) -> str:
|
| 45 |
+
"""Transform markdown report into audio-friendly plain text.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
markdown_text: Markdown-formatted research report
|
| 49 |
+
use_llm_polish: If True, apply LLM-based final polish (optional)
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
Clean plain text optimized for TTS audio
|
| 53 |
+
"""
|
| 54 |
+
logger.info("Refining report for audio output", use_llm_polish=use_llm_polish)
|
| 55 |
+
|
| 56 |
+
text = markdown_text
|
| 57 |
+
|
| 58 |
+
# Step 1: Keep only content before first References section
|
| 59 |
+
text = self._remove_references_sections(text)
|
| 60 |
+
|
| 61 |
+
# Step 2: Remove markdown formatting
|
| 62 |
+
text = self._remove_markdown_syntax(text)
|
| 63 |
+
|
| 64 |
+
# Step 3: Convert roman numerals to words
|
| 65 |
+
text = self._convert_roman_numerals(text)
|
| 66 |
+
|
| 67 |
+
# Step 4: Remove citations
|
| 68 |
+
text = self._remove_citations(text)
|
| 69 |
+
|
| 70 |
+
# Step 5: Clean up special characters and artifacts
|
| 71 |
+
text = self._clean_special_characters(text)
|
| 72 |
+
|
| 73 |
+
# Step 6: Normalize whitespace
|
| 74 |
+
text = self._normalize_whitespace(text)
|
| 75 |
+
|
| 76 |
+
# Step 7 (Optional): LLM polish for edge cases
|
| 77 |
+
if use_llm_polish:
|
| 78 |
+
text = await self._llm_polish(text)
|
| 79 |
+
|
| 80 |
+
logger.info(
|
| 81 |
+
"Audio refinement complete",
|
| 82 |
+
original_length=len(markdown_text),
|
| 83 |
+
refined_length=len(text),
|
| 84 |
+
llm_polish_applied=use_llm_polish
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
return text.strip()
|
| 88 |
+
|
| 89 |
+
def _remove_references_sections(self, text: str) -> str:
|
| 90 |
+
"""Remove References sections while preserving other content.
|
| 91 |
+
|
| 92 |
+
Removes the References section and its content until the next section
|
| 93 |
+
heading or end of document. Handles multiple References sections.
|
| 94 |
+
|
| 95 |
+
Matches various References heading formats:
|
| 96 |
+
- # References
|
| 97 |
+
- ## References
|
| 98 |
+
- **References:**
|
| 99 |
+
- **Additional References:**
|
| 100 |
+
"""
|
| 101 |
+
# Pattern to match References section heading (case-insensitive)
|
| 102 |
+
# Only matches headings that contain "Reference" or "References"
|
| 103 |
+
references_pattern = r'\n(?:#+\s*References?:?\s*\n|\*\*\s*(?:Additional\s+)?References?:?\s*\*\*\s*\n)'
|
| 104 |
+
|
| 105 |
+
# Find all References sections
|
| 106 |
+
while True:
|
| 107 |
+
match = re.search(references_pattern, text, re.IGNORECASE)
|
| 108 |
+
if not match:
|
| 109 |
+
break
|
| 110 |
+
|
| 111 |
+
# Find the start of the References section
|
| 112 |
+
section_start = match.start()
|
| 113 |
+
|
| 114 |
+
# Find the next section (markdown header or bold heading) or end of document
|
| 115 |
+
# Match: "# Header", "## Header", or "**Header**"
|
| 116 |
+
next_section_patterns = [
|
| 117 |
+
r'\n#+\s+\w+', # Markdown headers (# Section, ## Section)
|
| 118 |
+
r'\n\*\*[A-Z][^*]+\*\*', # Bold headings (**Section Name**)
|
| 119 |
+
]
|
| 120 |
+
|
| 121 |
+
remaining_text = text[match.end():]
|
| 122 |
+
next_section_match = None
|
| 123 |
+
|
| 124 |
+
# Try all patterns and find the earliest match
|
| 125 |
+
earliest_match = None
|
| 126 |
+
for pattern in next_section_patterns:
|
| 127 |
+
m = re.search(pattern, remaining_text)
|
| 128 |
+
if m and (earliest_match is None or m.start() < earliest_match.start()):
|
| 129 |
+
earliest_match = m
|
| 130 |
+
|
| 131 |
+
next_section_match = earliest_match
|
| 132 |
+
|
| 133 |
+
if next_section_match:
|
| 134 |
+
# Remove from References heading to next section
|
| 135 |
+
section_end = match.end() + next_section_match.start()
|
| 136 |
+
else:
|
| 137 |
+
# No next section - remove to end of document
|
| 138 |
+
section_end = len(text)
|
| 139 |
+
|
| 140 |
+
# Remove the References section
|
| 141 |
+
text = text[:section_start] + text[section_end:]
|
| 142 |
+
logger.debug(
|
| 143 |
+
"Removed References section",
|
| 144 |
+
removed_chars=section_end - section_start
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
return text
|
| 148 |
+
|
| 149 |
+
def _remove_markdown_syntax(self, text: str) -> str:
|
| 150 |
+
"""Remove markdown formatting syntax."""
|
| 151 |
+
|
| 152 |
+
# Headers (# ## ###)
|
| 153 |
+
text = re.sub(r'^\s*#+\s+', '', text, flags=re.MULTILINE)
|
| 154 |
+
|
| 155 |
+
# Bold (**text** or __text__)
|
| 156 |
+
text = re.sub(r'\*\*([^*]+)\*\*', r'\1', text)
|
| 157 |
+
text = re.sub(r'__([^_]+)__', r'\1', text)
|
| 158 |
+
|
| 159 |
+
# Italic (*text* or _text_)
|
| 160 |
+
text = re.sub(r'\*([^*]+)\*', r'\1', text)
|
| 161 |
+
text = re.sub(r'_([^_]+)_', r'\1', text)
|
| 162 |
+
|
| 163 |
+
# Links [text](url) → text
|
| 164 |
+
text = re.sub(r'\[([^\]]+)\]\([^)]+\)', r'\1', text)
|
| 165 |
+
|
| 166 |
+
# Inline code `code` → code
|
| 167 |
+
text = re.sub(r'`([^`]+)`', r'\1', text)
|
| 168 |
+
|
| 169 |
+
# Strikethrough ~~text~~
|
| 170 |
+
text = re.sub(r'~~([^~]+)~~', r'\1', text)
|
| 171 |
+
|
| 172 |
+
# Blockquotes (> text)
|
| 173 |
+
text = re.sub(r'^\s*>\s+', '', text, flags=re.MULTILINE)
|
| 174 |
+
|
| 175 |
+
# Horizontal rules (---, ***, ___)
|
| 176 |
+
text = re.sub(r'^\s*[-*_]{3,}\s*$', '', text, flags=re.MULTILINE)
|
| 177 |
+
|
| 178 |
+
# List markers (-, *, 1., 2.)
|
| 179 |
+
text = re.sub(r'^\s*[-*]\s+', '', text, flags=re.MULTILINE)
|
| 180 |
+
text = re.sub(r'^\s*\d+\.\s+', '', text, flags=re.MULTILINE)
|
| 181 |
+
|
| 182 |
+
return text
|
| 183 |
+
|
| 184 |
+
def _roman_to_int(self, roman: str) -> Optional[int]:
|
| 185 |
+
"""Convert roman numeral string to integer.
|
| 186 |
+
|
| 187 |
+
Args:
|
| 188 |
+
roman: Roman numeral string (e.g., 'IV', 'XII')
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
Integer value, or None if invalid roman numeral
|
| 192 |
+
"""
|
| 193 |
+
roman = roman.upper()
|
| 194 |
+
result = 0
|
| 195 |
+
prev_value = 0
|
| 196 |
+
|
| 197 |
+
for char in reversed(roman):
|
| 198 |
+
if char not in self.ROMAN_VALUES:
|
| 199 |
+
return None
|
| 200 |
+
|
| 201 |
+
value = self.ROMAN_VALUES[char]
|
| 202 |
+
|
| 203 |
+
# Subtractive notation (IV = 4, IX = 9)
|
| 204 |
+
if value < prev_value:
|
| 205 |
+
result -= value
|
| 206 |
+
else:
|
| 207 |
+
result += value
|
| 208 |
+
|
| 209 |
+
prev_value = value
|
| 210 |
+
|
| 211 |
+
return result
|
| 212 |
+
|
| 213 |
+
def _int_to_word(self, num: int) -> str:
|
| 214 |
+
"""Convert integer to word representation.
|
| 215 |
+
|
| 216 |
+
Args:
|
| 217 |
+
num: Integer to convert (1-20 supported)
|
| 218 |
+
|
| 219 |
+
Returns:
|
| 220 |
+
Word representation (e.g., 'One', 'Twelve')
|
| 221 |
+
"""
|
| 222 |
+
if num in self.NUMBER_TO_WORD:
|
| 223 |
+
return self.NUMBER_TO_WORD[num]
|
| 224 |
+
else:
|
| 225 |
+
# For numbers > 20, just return the digit
|
| 226 |
+
return str(num)
|
| 227 |
+
|
| 228 |
+
def _convert_roman_numerals(self, text: str) -> str:
|
| 229 |
+
"""Convert roman numerals to words for better TTS pronunciation.
|
| 230 |
+
|
| 231 |
+
Handles patterns like:
|
| 232 |
+
- Phase I, Phase II, Phase III
|
| 233 |
+
- Trial I, Trial II
|
| 234 |
+
- Type I, Type II
|
| 235 |
+
- Stage I, Stage II
|
| 236 |
+
- Standalone I, II, III (with word boundaries)
|
| 237 |
+
"""
|
| 238 |
+
|
| 239 |
+
def replace_roman(match):
|
| 240 |
+
"""Callback to replace matched roman numeral."""
|
| 241 |
+
prefix = match.group(1) # Word before roman numeral (if any)
|
| 242 |
+
roman = match.group(2) # The roman numeral
|
| 243 |
+
|
| 244 |
+
# Convert to integer
|
| 245 |
+
num = self._roman_to_int(roman)
|
| 246 |
+
if num is None:
|
| 247 |
+
return match.group(0) # Return original if invalid
|
| 248 |
+
|
| 249 |
+
# Convert to word
|
| 250 |
+
word = self._int_to_word(num)
|
| 251 |
+
|
| 252 |
+
# Return with prefix if present
|
| 253 |
+
if prefix:
|
| 254 |
+
return f"{prefix} {word}"
|
| 255 |
+
else:
|
| 256 |
+
return word
|
| 257 |
+
|
| 258 |
+
# Pattern: Optional word + space + roman numeral
|
| 259 |
+
# Matches: "Phase I", "Trial II", standalone "I", "II"
|
| 260 |
+
# Uses word boundaries to avoid matching "I" in "INVALID"
|
| 261 |
+
pattern = r'\b(Phase|Trial|Type|Stage|Class|Group|Arm|Cohort)?\s*([IVXLCDM]+)\b'
|
| 262 |
+
|
| 263 |
+
text = re.sub(pattern, replace_roman, text)
|
| 264 |
+
|
| 265 |
+
return text
|
| 266 |
+
|
| 267 |
+
def _remove_citations(self, text: str) -> str:
|
| 268 |
+
"""Remove citation markers and references."""
|
| 269 |
+
|
| 270 |
+
# Numbered citations [1], [2], [1,2], [1-3]
|
| 271 |
+
text = re.sub(r'\[\d+(?:[-,]\d+)*\]', '', text)
|
| 272 |
+
|
| 273 |
+
# Author citations (Smith et al., 2023) or (Smith et al. 2023)
|
| 274 |
+
text = re.sub(r'\([A-Z][a-z]+\s+et\s+al\.?,?\s+\d{4}\)', '', text)
|
| 275 |
+
|
| 276 |
+
# Simple year citations (2023)
|
| 277 |
+
text = re.sub(r'\(\d{4}\)', '', text)
|
| 278 |
+
|
| 279 |
+
# Author-year (Smith, 2023)
|
| 280 |
+
text = re.sub(r'\([A-Z][a-z]+,?\s+\d{4}\)', '', text)
|
| 281 |
+
|
| 282 |
+
# Footnote markers (¹, ², ³)
|
| 283 |
+
text = re.sub(r'[¹²³⁴⁵⁶⁷⁸⁹⁰]+', '', text)
|
| 284 |
+
|
| 285 |
+
return text
|
| 286 |
+
|
| 287 |
+
def _clean_special_characters(self, text: str) -> str:
|
| 288 |
+
"""Clean up special characters and formatting artifacts."""
|
| 289 |
+
|
| 290 |
+
# Replace em dashes with regular dashes
|
| 291 |
+
text = text.replace('\u2014', '-') # em dash
|
| 292 |
+
text = text.replace('\u2013', '-') # en dash
|
| 293 |
+
|
| 294 |
+
# Replace smart quotes with regular quotes
|
| 295 |
+
text = text.replace('\u201c', '"') # left double quote
|
| 296 |
+
text = text.replace('\u201d', '"') # right double quote
|
| 297 |
+
text = text.replace('\u2018', "'") # left single quote
|
| 298 |
+
text = text.replace('\u2019', "'") # right single quote
|
| 299 |
+
|
| 300 |
+
# Remove excessive punctuation (!!!, ???)
|
| 301 |
+
text = re.sub(r'([!?]){2,}', r'\1', text)
|
| 302 |
+
|
| 303 |
+
# Remove asterisks used for footnotes
|
| 304 |
+
text = re.sub(r'\*+', '', text)
|
| 305 |
+
|
| 306 |
+
# Remove hash symbols (from headers)
|
| 307 |
+
text = text.replace('#', '')
|
| 308 |
+
|
| 309 |
+
# Remove excessive dots (...)
|
| 310 |
+
text = re.sub(r'\.{4,}', '...', text)
|
| 311 |
+
|
| 312 |
+
return text
|
| 313 |
+
|
| 314 |
+
def _normalize_whitespace(self, text: str) -> str:
|
| 315 |
+
"""Normalize whitespace for clean audio output."""
|
| 316 |
+
|
| 317 |
+
# Replace multiple spaces with single space
|
| 318 |
+
text = re.sub(r' {2,}', ' ', text)
|
| 319 |
+
|
| 320 |
+
# Replace multiple newlines with double newline (paragraph break)
|
| 321 |
+
text = re.sub(r'\n{3,}', '\n\n', text)
|
| 322 |
+
|
| 323 |
+
# Remove trailing/leading whitespace from lines
|
| 324 |
+
text = '\n'.join(line.strip() for line in text.split('\n'))
|
| 325 |
+
|
| 326 |
+
# Remove empty lines at start/end
|
| 327 |
+
text = text.strip()
|
| 328 |
+
|
| 329 |
+
return text
|
| 330 |
+
|
| 331 |
+
async def _llm_polish(self, text: str) -> str:
|
| 332 |
+
"""Apply LLM-based final polish to catch edge cases.
|
| 333 |
+
|
| 334 |
+
This is a lightweight pass that removes any remaining formatting
|
| 335 |
+
artifacts the rule-based methods might have missed.
|
| 336 |
+
|
| 337 |
+
Args:
|
| 338 |
+
text: Pre-cleaned text from rule-based methods
|
| 339 |
+
|
| 340 |
+
Returns:
|
| 341 |
+
Final polished text ready for TTS
|
| 342 |
+
"""
|
| 343 |
+
try:
|
| 344 |
+
# Create a simple agent for text cleanup
|
| 345 |
+
model = get_pydantic_ai_model()
|
| 346 |
+
polish_agent = Agent(
|
| 347 |
+
model=model,
|
| 348 |
+
system_prompt=(
|
| 349 |
+
"You are a text cleanup assistant. Your ONLY job is to remove "
|
| 350 |
+
"any remaining formatting artifacts (markdown, citations, special "
|
| 351 |
+
"characters) that make text unsuitable for text-to-speech audio. "
|
| 352 |
+
"DO NOT rewrite, improve, or change the content. "
|
| 353 |
+
"DO NOT add explanations. "
|
| 354 |
+
"ONLY output the cleaned text."
|
| 355 |
+
),
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# Run asynchronously
|
| 359 |
+
result = await polish_agent.run(
|
| 360 |
+
f"Clean this text for audio (remove any formatting artifacts):\n\n{text}"
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
polished_text = result.output.strip()
|
| 364 |
+
|
| 365 |
+
logger.info(
|
| 366 |
+
"llm_polish_applied",
|
| 367 |
+
original_length=len(text),
|
| 368 |
+
polished_length=len(polished_text)
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
return polished_text
|
| 372 |
+
|
| 373 |
+
except Exception as e:
|
| 374 |
+
logger.warning(
|
| 375 |
+
"llm_polish_failed",
|
| 376 |
+
error=str(e),
|
| 377 |
+
message="Falling back to rule-based output"
|
| 378 |
+
)
|
| 379 |
+
# Graceful fallback: return original text if LLM fails
|
| 380 |
+
return text
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
# Singleton instance for easy import
|
| 384 |
+
audio_refiner = AudioRefiner()
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
async def refine_text_for_audio(markdown_text: str, use_llm_polish: bool = False) -> str:
|
| 388 |
+
"""Convenience function to refine markdown text for audio.
|
| 389 |
+
|
| 390 |
+
Args:
|
| 391 |
+
markdown_text: Markdown-formatted text
|
| 392 |
+
use_llm_polish: If True, apply LLM-based final polish (optional)
|
| 393 |
+
|
| 394 |
+
Returns:
|
| 395 |
+
Audio-friendly plain text
|
| 396 |
+
"""
|
| 397 |
+
return await audio_refiner.refine_for_audio(markdown_text, use_llm_polish=use_llm_polish)
|
src/app.py
CHANGED
|
@@ -18,6 +18,7 @@ import structlog
|
|
| 18 |
|
| 19 |
from src.agent_factory.judges import HFInferenceJudgeHandler, JudgeHandler, MockJudgeHandler
|
| 20 |
from src.orchestrator_factory import create_orchestrator
|
|
|
|
| 21 |
from src.services.multimodal_processing import get_multimodal_service
|
| 22 |
from src.utils.config import settings
|
| 23 |
from src.utils.models import AgentEvent, OrchestratorConfig
|
|
@@ -446,6 +447,7 @@ async def research_agent(
|
|
| 446 |
enable_audio_input: bool = True,
|
| 447 |
tts_voice: str = "af_heart",
|
| 448 |
tts_speed: float = 1.0,
|
|
|
|
| 449 |
web_search_provider: str = "auto",
|
| 450 |
oauth_token: gr.OAuthToken | None = None,
|
| 451 |
oauth_profile: gr.OAuthProfile | None = None,
|
|
@@ -465,6 +467,7 @@ async def research_agent(
|
|
| 465 |
enable_audio_input: Whether to process audio inputs
|
| 466 |
tts_voice: TTS voice selection
|
| 467 |
tts_speed: TTS speech speed
|
|
|
|
| 468 |
web_search_provider: Web search provider selection
|
| 469 |
oauth_token: Gradio OAuth token (None if user not logged in)
|
| 470 |
oauth_profile: Gradio OAuth profile (None if user not logged in)
|
|
@@ -585,17 +588,23 @@ async def research_agent(
|
|
| 585 |
# Optional: Generate audio output if enabled
|
| 586 |
if settings.enable_audio_output and settings.modal_available:
|
| 587 |
try:
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
tts_service = get_tts_service()
|
| 591 |
# Get the last message from history for TTS
|
| 592 |
last_message = history[-1].get("content", "") if history else processed_text
|
| 593 |
if last_message:
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
except Exception as e:
|
| 600 |
logger.warning("audio_synthesis_failed", error=str(e))
|
| 601 |
# Continue without audio output
|
|
@@ -1081,6 +1090,13 @@ def create_demo() -> gr.Blocks:
|
|
| 1081 |
interactive=False, # GPU type set at function definition time, requires restart
|
| 1082 |
)
|
| 1083 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1084 |
# Audio output component (for TTS response) - moved to sidebar
|
| 1085 |
audio_output = gr.Audio(
|
| 1086 |
label="🔊 Audio Response",
|
|
@@ -1091,18 +1107,19 @@ def create_demo() -> gr.Blocks:
|
|
| 1091 |
# This must be after audio_output is defined
|
| 1092 |
def update_tts_visibility(
|
| 1093 |
enabled: bool,
|
| 1094 |
-
) -> tuple[dict[str, Any], dict[str, Any], dict[str, Any]]:
|
| 1095 |
"""Update visibility of TTS components based on enable checkbox."""
|
| 1096 |
return (
|
| 1097 |
gr.update(visible=enabled),
|
| 1098 |
gr.update(visible=enabled),
|
| 1099 |
gr.update(visible=enabled),
|
|
|
|
| 1100 |
)
|
| 1101 |
|
| 1102 |
enable_audio_output_checkbox.change(
|
| 1103 |
fn=update_tts_visibility,
|
| 1104 |
inputs=[enable_audio_output_checkbox],
|
| 1105 |
-
outputs=[tts_voice_dropdown, tts_speed_slider, audio_output],
|
| 1106 |
)
|
| 1107 |
|
| 1108 |
# Chat interface with multimodal support
|
|
@@ -1196,6 +1213,7 @@ def create_demo() -> gr.Blocks:
|
|
| 1196 |
enable_audio_input_checkbox,
|
| 1197 |
tts_voice_dropdown,
|
| 1198 |
tts_speed_slider,
|
|
|
|
| 1199 |
web_search_provider_dropdown,
|
| 1200 |
# Note: gr.OAuthToken and gr.OAuthProfile are automatically passed as function parameters
|
| 1201 |
],
|
|
|
|
| 18 |
|
| 19 |
from src.agent_factory.judges import HFInferenceJudgeHandler, JudgeHandler, MockJudgeHandler
|
| 20 |
from src.orchestrator_factory import create_orchestrator
|
| 21 |
+
from src.services.audio_processing import get_audio_service
|
| 22 |
from src.services.multimodal_processing import get_multimodal_service
|
| 23 |
from src.utils.config import settings
|
| 24 |
from src.utils.models import AgentEvent, OrchestratorConfig
|
|
|
|
| 447 |
enable_audio_input: bool = True,
|
| 448 |
tts_voice: str = "af_heart",
|
| 449 |
tts_speed: float = 1.0,
|
| 450 |
+
tts_use_llm_polish: bool = False,
|
| 451 |
web_search_provider: str = "auto",
|
| 452 |
oauth_token: gr.OAuthToken | None = None,
|
| 453 |
oauth_profile: gr.OAuthProfile | None = None,
|
|
|
|
| 467 |
enable_audio_input: Whether to process audio inputs
|
| 468 |
tts_voice: TTS voice selection
|
| 469 |
tts_speed: TTS speech speed
|
| 470 |
+
tts_use_llm_polish: Apply LLM-based final polish to audio text (costs API calls)
|
| 471 |
web_search_provider: Web search provider selection
|
| 472 |
oauth_token: Gradio OAuth token (None if user not logged in)
|
| 473 |
oauth_profile: Gradio OAuth profile (None if user not logged in)
|
|
|
|
| 588 |
# Optional: Generate audio output if enabled
|
| 589 |
if settings.enable_audio_output and settings.modal_available:
|
| 590 |
try:
|
| 591 |
+
audio_service = get_audio_service()
|
|
|
|
|
|
|
| 592 |
# Get the last message from history for TTS
|
| 593 |
last_message = history[-1].get("content", "") if history else processed_text
|
| 594 |
if last_message:
|
| 595 |
+
# Temporarily override tts_use_llm_polish setting from UI
|
| 596 |
+
original_llm_polish = settings.tts_use_llm_polish
|
| 597 |
+
try:
|
| 598 |
+
settings.tts_use_llm_polish = tts_use_llm_polish
|
| 599 |
+
# Use UI-configured voice and speed, fallback to settings defaults
|
| 600 |
+
await audio_service.generate_audio_output(
|
| 601 |
+
text=last_message,
|
| 602 |
+
voice=tts_voice or settings.tts_voice,
|
| 603 |
+
speed=tts_speed if tts_speed else settings.tts_speed,
|
| 604 |
+
)
|
| 605 |
+
finally:
|
| 606 |
+
# Restore original setting
|
| 607 |
+
settings.tts_use_llm_polish = original_llm_polish
|
| 608 |
except Exception as e:
|
| 609 |
logger.warning("audio_synthesis_failed", error=str(e))
|
| 610 |
# Continue without audio output
|
|
|
|
| 1090 |
interactive=False, # GPU type set at function definition time, requires restart
|
| 1091 |
)
|
| 1092 |
|
| 1093 |
+
tts_use_llm_polish_checkbox = gr.Checkbox(
|
| 1094 |
+
value=settings.tts_use_llm_polish,
|
| 1095 |
+
label="Use LLM Polish for Audio",
|
| 1096 |
+
info="Apply LLM-based final polish to remove remaining formatting artifacts (costs API calls)",
|
| 1097 |
+
visible=settings.enable_audio_output,
|
| 1098 |
+
)
|
| 1099 |
+
|
| 1100 |
# Audio output component (for TTS response) - moved to sidebar
|
| 1101 |
audio_output = gr.Audio(
|
| 1102 |
label="🔊 Audio Response",
|
|
|
|
| 1107 |
# This must be after audio_output is defined
|
| 1108 |
def update_tts_visibility(
|
| 1109 |
enabled: bool,
|
| 1110 |
+
) -> tuple[dict[str, Any], dict[str, Any], dict[str, Any], dict[str, Any]]:
|
| 1111 |
"""Update visibility of TTS components based on enable checkbox."""
|
| 1112 |
return (
|
| 1113 |
gr.update(visible=enabled),
|
| 1114 |
gr.update(visible=enabled),
|
| 1115 |
gr.update(visible=enabled),
|
| 1116 |
+
gr.update(visible=enabled),
|
| 1117 |
)
|
| 1118 |
|
| 1119 |
enable_audio_output_checkbox.change(
|
| 1120 |
fn=update_tts_visibility,
|
| 1121 |
inputs=[enable_audio_output_checkbox],
|
| 1122 |
+
outputs=[tts_voice_dropdown, tts_speed_slider, tts_use_llm_polish_checkbox, audio_output],
|
| 1123 |
)
|
| 1124 |
|
| 1125 |
# Chat interface with multimodal support
|
|
|
|
| 1213 |
enable_audio_input_checkbox,
|
| 1214 |
tts_voice_dropdown,
|
| 1215 |
tts_speed_slider,
|
| 1216 |
+
tts_use_llm_polish_checkbox,
|
| 1217 |
web_search_provider_dropdown,
|
| 1218 |
# Note: gr.OAuthToken and gr.OAuthProfile are automatically passed as function parameters
|
| 1219 |
],
|
src/services/audio_processing.py
CHANGED
|
@@ -6,6 +6,7 @@ from typing import Any
|
|
| 6 |
import numpy as np
|
| 7 |
import structlog
|
| 8 |
|
|
|
|
| 9 |
from src.services.stt_gradio import STTService, get_stt_service
|
| 10 |
from src.utils.config import settings
|
| 11 |
|
|
@@ -85,7 +86,7 @@ class AudioService:
|
|
| 85 |
"""Generate audio output from text.
|
| 86 |
|
| 87 |
Args:
|
| 88 |
-
text: Text to synthesize
|
| 89 |
voice: Voice ID (default: settings.tts_voice)
|
| 90 |
speed: Speech speed (default: settings.tts_speed)
|
| 91 |
|
|
@@ -101,11 +102,22 @@ class AudioService:
|
|
| 101 |
return None
|
| 102 |
|
| 103 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
# Use provided voice/speed or fallback to settings defaults
|
| 105 |
voice = voice if voice else settings.tts_voice
|
| 106 |
speed = speed if speed is not None else settings.tts_speed
|
| 107 |
|
| 108 |
-
audio_output = await self.tts.synthesize_async(
|
| 109 |
|
| 110 |
if audio_output:
|
| 111 |
logger.info(
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import structlog
|
| 8 |
|
| 9 |
+
from src.agents.audio_refiner import audio_refiner
|
| 10 |
from src.services.stt_gradio import STTService, get_stt_service
|
| 11 |
from src.utils.config import settings
|
| 12 |
|
|
|
|
| 86 |
"""Generate audio output from text.
|
| 87 |
|
| 88 |
Args:
|
| 89 |
+
text: Text to synthesize (markdown will be cleaned for audio)
|
| 90 |
voice: Voice ID (default: settings.tts_voice)
|
| 91 |
speed: Speech speed (default: settings.tts_speed)
|
| 92 |
|
|
|
|
| 102 |
return None
|
| 103 |
|
| 104 |
try:
|
| 105 |
+
# Refine text for audio (remove markdown, citations, etc.)
|
| 106 |
+
# Use LLM polish if enabled in settings
|
| 107 |
+
refined_text = await audio_refiner.refine_for_audio(
|
| 108 |
+
text,
|
| 109 |
+
use_llm_polish=settings.tts_use_llm_polish
|
| 110 |
+
)
|
| 111 |
+
logger.info("text_refined_for_audio",
|
| 112 |
+
original_length=len(text),
|
| 113 |
+
refined_length=len(refined_text),
|
| 114 |
+
llm_polish_enabled=settings.tts_use_llm_polish)
|
| 115 |
+
|
| 116 |
# Use provided voice/speed or fallback to settings defaults
|
| 117 |
voice = voice if voice else settings.tts_voice
|
| 118 |
speed = speed if speed is not None else settings.tts_speed
|
| 119 |
|
| 120 |
+
audio_output = await self.tts.synthesize_async(refined_text, voice, speed) # type: ignore[misc]
|
| 121 |
|
| 122 |
if audio_output:
|
| 123 |
logger.info(
|
src/services/tts_modal.py
CHANGED
|
@@ -1,12 +1,18 @@
|
|
| 1 |
"""Text-to-Speech service using Kokoro 82M via Modal GPU."""
|
| 2 |
|
| 3 |
import asyncio
|
|
|
|
| 4 |
from functools import lru_cache
|
| 5 |
from typing import Any
|
| 6 |
|
| 7 |
import numpy as np
|
| 8 |
import structlog
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from src.utils.config import settings
|
| 11 |
from src.utils.exceptions import ConfigurationError
|
| 12 |
|
|
@@ -24,39 +30,52 @@ KOKORO_DEPENDENCIES = [
|
|
| 24 |
# Modal app and function definitions (module-level for Modal)
|
| 25 |
_modal_app: Any | None = None
|
| 26 |
_tts_function: Any | None = None
|
|
|
|
| 27 |
|
| 28 |
|
| 29 |
def _get_modal_app() -> Any:
|
| 30 |
-
"""Get or create Modal app instance.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
global _modal_app
|
| 32 |
if _modal_app is None:
|
| 33 |
try:
|
| 34 |
import modal
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
raise ConfigurationError(
|
| 39 |
-
"Modal credentials not
|
|
|
|
| 40 |
)
|
| 41 |
|
| 42 |
# Validate token ID format (Modal token IDs are typically UUIDs or specific formats)
|
| 43 |
-
token_id
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
try:
|
| 53 |
-
_modal_app = modal.App
|
| 54 |
except Exception as e:
|
| 55 |
error_msg = str(e).lower()
|
| 56 |
if "token" in error_msg or "malformed" in error_msg or "invalid" in error_msg:
|
| 57 |
raise ConfigurationError(
|
| 58 |
f"Modal token validation failed: {e}. "
|
| 59 |
-
"Please check that MODAL_TOKEN_ID and MODAL_TOKEN_SECRET are correctly set."
|
| 60 |
) from e
|
| 61 |
raise
|
| 62 |
except ImportError as e:
|
|
@@ -69,23 +88,92 @@ def _get_modal_app() -> Any:
|
|
| 69 |
# Define Modal image with Kokoro dependencies (module-level)
|
| 70 |
def _get_tts_image() -> Any:
|
| 71 |
"""Get Modal image with Kokoro dependencies."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
try:
|
| 73 |
import modal
|
| 74 |
|
| 75 |
-
|
| 76 |
modal.Image.debian_slim(python_version="3.11")
|
| 77 |
.pip_install(*KOKORO_DEPENDENCIES)
|
| 78 |
.pip_install("git+https://github.com/hexgrad/kokoro.git")
|
| 79 |
)
|
|
|
|
| 80 |
except ImportError:
|
| 81 |
return None
|
| 82 |
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def _setup_modal_function() -> None:
|
| 85 |
"""Setup Modal GPU function for TTS (called once, lazy initialization).
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
| 89 |
"""
|
| 90 |
global _tts_function
|
| 91 |
|
|
@@ -93,80 +181,27 @@ def _setup_modal_function() -> None:
|
|
| 93 |
return # Already set up
|
| 94 |
|
| 95 |
try:
|
| 96 |
-
|
| 97 |
-
tts_image = _get_tts_image()
|
| 98 |
-
|
| 99 |
-
if tts_image is None:
|
| 100 |
-
raise ConfigurationError("Modal image setup failed")
|
| 101 |
-
|
| 102 |
-
# Get GPU and timeout from settings (with defaults)
|
| 103 |
-
# Note: These are evaluated at function definition time, not at call time
|
| 104 |
-
# Changes to settings require app restart
|
| 105 |
-
gpu_type = getattr(settings, "tts_gpu", None) or "T4"
|
| 106 |
-
timeout_seconds = getattr(settings, "tts_timeout", None) or 60
|
| 107 |
-
|
| 108 |
-
# Define GPU function at module level (required by Modal)
|
| 109 |
-
# Modal functions are immutable once defined, so GPU changes require restart
|
| 110 |
-
@app.function( # type: ignore[misc]
|
| 111 |
-
image=tts_image,
|
| 112 |
-
gpu=gpu_type,
|
| 113 |
-
timeout=timeout_seconds,
|
| 114 |
-
)
|
| 115 |
-
def kokoro_tts_function(
|
| 116 |
-
text: str, voice: str, speed: float
|
| 117 |
-
) -> tuple[int, np.ndarray[Any, Any]]: # type: ignore[type-arg]
|
| 118 |
-
"""Modal GPU function for Kokoro TTS.
|
| 119 |
-
|
| 120 |
-
This function runs on Modal's GPU infrastructure.
|
| 121 |
-
Based on: https://huggingface.co/spaces/hexgrad/Kokoro-TTS
|
| 122 |
-
Reference: https://huggingface.co/spaces/hexgrad/Kokoro-TTS/raw/main/app.py
|
| 123 |
-
"""
|
| 124 |
-
import numpy as np
|
| 125 |
-
|
| 126 |
-
# Import Kokoro inside function (lazy load)
|
| 127 |
-
try:
|
| 128 |
-
from kokoro import KModel, KPipeline
|
| 129 |
-
|
| 130 |
-
# Initialize model (cached on GPU)
|
| 131 |
-
model = KModel().to("cuda").eval()
|
| 132 |
-
pipeline = KPipeline(lang_code=voice[0])
|
| 133 |
-
pack = pipeline.load_voice(voice)
|
| 134 |
-
|
| 135 |
-
# Generate audio
|
| 136 |
-
for _, ps, _ in pipeline(text, voice, speed):
|
| 137 |
-
ref_s = pack[len(ps) - 1]
|
| 138 |
-
audio = model(ps, ref_s, speed)
|
| 139 |
-
return (24000, audio.numpy())
|
| 140 |
-
|
| 141 |
-
# If no audio generated, return empty
|
| 142 |
-
return (24000, np.zeros(1, dtype=np.float32))
|
| 143 |
-
|
| 144 |
-
except ImportError as e:
|
| 145 |
-
raise ConfigurationError(
|
| 146 |
-
"Kokoro not installed. Install with: pip install git+https://github.com/hexgrad/kokoro.git"
|
| 147 |
-
) from e
|
| 148 |
-
except Exception as e:
|
| 149 |
-
raise ConfigurationError(f"TTS synthesis failed: {e}") from e
|
| 150 |
-
|
| 151 |
-
# Store function reference for remote calls
|
| 152 |
-
_tts_function = kokoro_tts_function
|
| 153 |
|
| 154 |
-
#
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
|
|
|
| 159 |
|
| 160 |
logger.info(
|
| 161 |
-
"
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
function_name=kokoro_tts_function.__name__,
|
| 165 |
)
|
| 166 |
|
| 167 |
except Exception as e:
|
| 168 |
logger.error("modal_tts_function_setup_failed", error=str(e))
|
| 169 |
-
raise ConfigurationError(
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
|
| 172 |
class ModalTTSExecutor:
|
|
@@ -180,13 +215,17 @@ class ModalTTSExecutor:
|
|
| 180 |
"""Initialize Modal TTS executor.
|
| 181 |
|
| 182 |
Note:
|
| 183 |
-
Logs a warning if Modal credentials are not configured.
|
| 184 |
-
Execution will fail at runtime without valid credentials.
|
| 185 |
"""
|
| 186 |
-
# Check for Modal credentials
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
| 188 |
logger.warning(
|
| 189 |
-
"Modal credentials not found
|
|
|
|
| 190 |
)
|
| 191 |
|
| 192 |
def synthesize(
|
|
@@ -195,7 +234,7 @@ class ModalTTSExecutor:
|
|
| 195 |
voice: str = "af_heart",
|
| 196 |
speed: float = 1.0,
|
| 197 |
timeout: int = 60,
|
| 198 |
-
) -> tuple[int, np.ndarray
|
| 199 |
"""Synthesize text to speech using Kokoro on Modal GPU.
|
| 200 |
|
| 201 |
Args:
|
|
@@ -226,7 +265,7 @@ class ModalTTSExecutor:
|
|
| 226 |
"tts_synthesis_complete", sample_rate=result[0], audio_shape=result[1].shape
|
| 227 |
)
|
| 228 |
|
| 229 |
-
return result
|
| 230 |
|
| 231 |
except Exception as e:
|
| 232 |
logger.error("tts_synthesis_failed", error=str(e), error_type=type(e).__name__)
|
|
@@ -237,9 +276,19 @@ class TTSService:
|
|
| 237 |
"""TTS service wrapper for async usage."""
|
| 238 |
|
| 239 |
def __init__(self) -> None:
|
| 240 |
-
"""Initialize TTS service.
|
| 241 |
-
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
self.executor = ModalTTSExecutor()
|
| 244 |
|
| 245 |
async def synthesize_async(
|
|
@@ -247,7 +296,7 @@ class TTSService:
|
|
| 247 |
text: str,
|
| 248 |
voice: str = "af_heart",
|
| 249 |
speed: float = 1.0,
|
| 250 |
-
) -> tuple[int, np.ndarray
|
| 251 |
"""Async wrapper for TTS synthesis.
|
| 252 |
|
| 253 |
Args:
|
|
|
|
| 1 |
"""Text-to-Speech service using Kokoro 82M via Modal GPU."""
|
| 2 |
|
| 3 |
import asyncio
|
| 4 |
+
import os
|
| 5 |
from functools import lru_cache
|
| 6 |
from typing import Any
|
| 7 |
|
| 8 |
import numpy as np
|
| 9 |
import structlog
|
| 10 |
|
| 11 |
+
# Load .env file BEFORE importing Modal SDK
|
| 12 |
+
# Modal SDK reads MODAL_TOKEN_ID and MODAL_TOKEN_SECRET from environment on import
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
load_dotenv()
|
| 15 |
+
|
| 16 |
from src.utils.config import settings
|
| 17 |
from src.utils.exceptions import ConfigurationError
|
| 18 |
|
|
|
|
| 30 |
# Modal app and function definitions (module-level for Modal)
|
| 31 |
_modal_app: Any | None = None
|
| 32 |
_tts_function: Any | None = None
|
| 33 |
+
_tts_image: Any | None = None
|
| 34 |
|
| 35 |
|
| 36 |
def _get_modal_app() -> Any:
|
| 37 |
+
"""Get or create Modal app instance.
|
| 38 |
+
|
| 39 |
+
Retrieves Modal credentials directly from environment variables (.env file)
|
| 40 |
+
instead of relying on settings configuration.
|
| 41 |
+
"""
|
| 42 |
global _modal_app
|
| 43 |
if _modal_app is None:
|
| 44 |
try:
|
| 45 |
import modal
|
| 46 |
|
| 47 |
+
# Get credentials directly from environment variables
|
| 48 |
+
token_id = os.getenv("MODAL_TOKEN_ID")
|
| 49 |
+
token_secret = os.getenv("MODAL_TOKEN_SECRET")
|
| 50 |
+
|
| 51 |
+
# Validate Modal credentials
|
| 52 |
+
if not token_id or not token_secret:
|
| 53 |
raise ConfigurationError(
|
| 54 |
+
"Modal credentials not found in environment. "
|
| 55 |
+
"Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env file."
|
| 56 |
)
|
| 57 |
|
| 58 |
# Validate token ID format (Modal token IDs are typically UUIDs or specific formats)
|
| 59 |
+
if len(token_id.strip()) < 10:
|
| 60 |
+
raise ConfigurationError(
|
| 61 |
+
f"Modal token ID appears malformed (too short: {len(token_id)} chars). "
|
| 62 |
+
"Token ID should be a valid Modal token identifier."
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
logger.info(
|
| 66 |
+
"modal_credentials_loaded",
|
| 67 |
+
token_id_prefix=token_id[:8] + "...", # Log prefix for debugging
|
| 68 |
+
has_secret=bool(token_secret),
|
| 69 |
+
)
|
| 70 |
|
| 71 |
try:
|
| 72 |
+
_modal_app = modal.App("deepcritical-tts")
|
| 73 |
except Exception as e:
|
| 74 |
error_msg = str(e).lower()
|
| 75 |
if "token" in error_msg or "malformed" in error_msg or "invalid" in error_msg:
|
| 76 |
raise ConfigurationError(
|
| 77 |
f"Modal token validation failed: {e}. "
|
| 78 |
+
"Please check that MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env are correctly set."
|
| 79 |
) from e
|
| 80 |
raise
|
| 81 |
except ImportError as e:
|
|
|
|
| 88 |
# Define Modal image with Kokoro dependencies (module-level)
|
| 89 |
def _get_tts_image() -> Any:
|
| 90 |
"""Get Modal image with Kokoro dependencies."""
|
| 91 |
+
global _tts_image
|
| 92 |
+
if _tts_image is not None:
|
| 93 |
+
return _tts_image
|
| 94 |
+
|
| 95 |
try:
|
| 96 |
import modal
|
| 97 |
|
| 98 |
+
_tts_image = (
|
| 99 |
modal.Image.debian_slim(python_version="3.11")
|
| 100 |
.pip_install(*KOKORO_DEPENDENCIES)
|
| 101 |
.pip_install("git+https://github.com/hexgrad/kokoro.git")
|
| 102 |
)
|
| 103 |
+
return _tts_image
|
| 104 |
except ImportError:
|
| 105 |
return None
|
| 106 |
|
| 107 |
|
| 108 |
+
# Modal TTS function - Using serialized=True to allow dynamic creation
|
| 109 |
+
# This will be initialized lazily when _setup_modal_function() is called
|
| 110 |
+
def _create_tts_function() -> Any:
|
| 111 |
+
"""Create the Modal TTS function using serialized=True.
|
| 112 |
+
|
| 113 |
+
The serialized=True parameter allows the function to be defined outside
|
| 114 |
+
of global scope, which is necessary for dynamic initialization.
|
| 115 |
+
"""
|
| 116 |
+
app = _get_modal_app()
|
| 117 |
+
tts_image = _get_tts_image()
|
| 118 |
+
|
| 119 |
+
if tts_image is None:
|
| 120 |
+
raise ConfigurationError("Modal image setup failed")
|
| 121 |
+
|
| 122 |
+
# Get GPU and timeout from settings (with defaults)
|
| 123 |
+
gpu_type = getattr(settings, "tts_gpu", None) or "T4"
|
| 124 |
+
timeout_seconds = getattr(settings, "tts_timeout", None) or 60
|
| 125 |
+
|
| 126 |
+
@app.function(
|
| 127 |
+
image=tts_image,
|
| 128 |
+
gpu=gpu_type,
|
| 129 |
+
timeout=timeout_seconds,
|
| 130 |
+
serialized=True, # Allow function to be defined outside global scope
|
| 131 |
+
)
|
| 132 |
+
def kokoro_tts_function(text: str, voice: str, speed: float) -> tuple[int, np.ndarray]:
|
| 133 |
+
"""Modal GPU function for Kokoro TTS.
|
| 134 |
+
|
| 135 |
+
This function runs on Modal's GPU infrastructure.
|
| 136 |
+
Based on: https://huggingface.co/spaces/hexgrad/Kokoro-TTS
|
| 137 |
+
Reference: https://huggingface.co/spaces/hexgrad/Kokoro-TTS/raw/main/app.py
|
| 138 |
+
"""
|
| 139 |
+
import numpy as np
|
| 140 |
+
|
| 141 |
+
# Import Kokoro inside function (lazy load)
|
| 142 |
+
try:
|
| 143 |
+
import torch
|
| 144 |
+
from kokoro import KModel, KPipeline
|
| 145 |
+
|
| 146 |
+
# Initialize model (cached on GPU)
|
| 147 |
+
model = KModel().to("cuda").eval()
|
| 148 |
+
pipeline = KPipeline(lang_code=voice[0])
|
| 149 |
+
pack = pipeline.load_voice(voice)
|
| 150 |
+
|
| 151 |
+
# Generate audio
|
| 152 |
+
for _, ps, _ in pipeline(text, voice, speed):
|
| 153 |
+
ref_s = pack[len(ps) - 1]
|
| 154 |
+
audio = model(ps, ref_s, speed)
|
| 155 |
+
return (24000, audio.numpy())
|
| 156 |
+
|
| 157 |
+
# If no audio generated, return empty
|
| 158 |
+
return (24000, np.zeros(1, dtype=np.float32))
|
| 159 |
+
|
| 160 |
+
except ImportError as e:
|
| 161 |
+
raise ConfigurationError(
|
| 162 |
+
"Kokoro not installed. Install with: pip install git+https://github.com/hexgrad/kokoro.git"
|
| 163 |
+
) from e
|
| 164 |
+
except Exception as e:
|
| 165 |
+
raise ConfigurationError(f"TTS synthesis failed: {e}") from e
|
| 166 |
+
|
| 167 |
+
return kokoro_tts_function
|
| 168 |
+
|
| 169 |
+
|
| 170 |
def _setup_modal_function() -> None:
|
| 171 |
"""Setup Modal GPU function for TTS (called once, lazy initialization).
|
| 172 |
|
| 173 |
+
Looks up the deployed Modal function instead of creating a new one.
|
| 174 |
+
This requires the 'deepcritical-tts' app to be deployed on Modal.
|
| 175 |
+
|
| 176 |
+
To deploy: modal deploy <script_with_tts_function>.py
|
| 177 |
"""
|
| 178 |
global _tts_function
|
| 179 |
|
|
|
|
| 181 |
return # Already set up
|
| 182 |
|
| 183 |
try:
|
| 184 |
+
import modal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
+
# Look up the deployed function from the Modal server
|
| 187 |
+
# This requires the app to be deployed: modal deploy tts_modal.py
|
| 188 |
+
_tts_function = modal.Function.from_name(
|
| 189 |
+
"deepcritical-tts",
|
| 190 |
+
"kokoro_tts_function"
|
| 191 |
+
)
|
| 192 |
|
| 193 |
logger.info(
|
| 194 |
+
"modal_tts_function_lookup_complete",
|
| 195 |
+
app_name="deepcritical-tts",
|
| 196 |
+
function_name="kokoro_tts_function",
|
|
|
|
| 197 |
)
|
| 198 |
|
| 199 |
except Exception as e:
|
| 200 |
logger.error("modal_tts_function_setup_failed", error=str(e))
|
| 201 |
+
raise ConfigurationError(
|
| 202 |
+
f"Failed to lookup Modal TTS function: {e}. "
|
| 203 |
+
"Make sure the 'deepcritical-tts' app is deployed on Modal."
|
| 204 |
+
) from e
|
| 205 |
|
| 206 |
|
| 207 |
class ModalTTSExecutor:
|
|
|
|
| 215 |
"""Initialize Modal TTS executor.
|
| 216 |
|
| 217 |
Note:
|
| 218 |
+
Logs a warning if Modal credentials are not configured in environment.
|
| 219 |
+
Execution will fail at runtime without valid credentials in .env file.
|
| 220 |
"""
|
| 221 |
+
# Check for Modal credentials directly from environment
|
| 222 |
+
token_id = os.getenv("MODAL_TOKEN_ID")
|
| 223 |
+
token_secret = os.getenv("MODAL_TOKEN_SECRET")
|
| 224 |
+
|
| 225 |
+
if not token_id or not token_secret:
|
| 226 |
logger.warning(
|
| 227 |
+
"Modal credentials not found in environment. "
|
| 228 |
+
"TTS will not be available. Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env file."
|
| 229 |
)
|
| 230 |
|
| 231 |
def synthesize(
|
|
|
|
| 234 |
voice: str = "af_heart",
|
| 235 |
speed: float = 1.0,
|
| 236 |
timeout: int = 60,
|
| 237 |
+
) -> tuple[int, np.ndarray]:
|
| 238 |
"""Synthesize text to speech using Kokoro on Modal GPU.
|
| 239 |
|
| 240 |
Args:
|
|
|
|
| 265 |
"tts_synthesis_complete", sample_rate=result[0], audio_shape=result[1].shape
|
| 266 |
)
|
| 267 |
|
| 268 |
+
return result
|
| 269 |
|
| 270 |
except Exception as e:
|
| 271 |
logger.error("tts_synthesis_failed", error=str(e), error_type=type(e).__name__)
|
|
|
|
| 276 |
"""TTS service wrapper for async usage."""
|
| 277 |
|
| 278 |
def __init__(self) -> None:
|
| 279 |
+
"""Initialize TTS service.
|
| 280 |
+
|
| 281 |
+
Validates Modal credentials from environment variables (.env file).
|
| 282 |
+
"""
|
| 283 |
+
# Check credentials directly from environment
|
| 284 |
+
token_id = os.getenv("MODAL_TOKEN_ID")
|
| 285 |
+
token_secret = os.getenv("MODAL_TOKEN_SECRET")
|
| 286 |
+
|
| 287 |
+
if not token_id or not token_secret:
|
| 288 |
+
raise ConfigurationError(
|
| 289 |
+
"Modal credentials required for TTS. "
|
| 290 |
+
"Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in .env file."
|
| 291 |
+
)
|
| 292 |
self.executor = ModalTTSExecutor()
|
| 293 |
|
| 294 |
async def synthesize_async(
|
|
|
|
| 296 |
text: str,
|
| 297 |
voice: str = "af_heart",
|
| 298 |
speed: float = 1.0,
|
| 299 |
+
) -> tuple[int, np.ndarray] | None:
|
| 300 |
"""Async wrapper for TTS synthesis.
|
| 301 |
|
| 302 |
Args:
|
src/utils/config.py
CHANGED
|
@@ -172,6 +172,10 @@ class Settings(BaseSettings):
|
|
| 172 |
le=2.0,
|
| 173 |
description="TTS speech speed multiplier (0.5x to 2.0x)",
|
| 174 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
tts_gpu: str | None = Field(
|
| 176 |
default=None,
|
| 177 |
description="Modal GPU type for TTS (T4, A10, A100, L4, L40S). None uses default T4.",
|
|
|
|
| 172 |
le=2.0,
|
| 173 |
description="TTS speech speed multiplier (0.5x to 2.0x)",
|
| 174 |
)
|
| 175 |
+
tts_use_llm_polish: bool = Field(
|
| 176 |
+
default=False,
|
| 177 |
+
description="Use LLM for final text polish before TTS (optional, costs API calls)",
|
| 178 |
+
)
|
| 179 |
tts_gpu: str | None = Field(
|
| 180 |
default=None,
|
| 181 |
description="Modal GPU type for TTS (T4, A10, A100, L4, L40S). None uses default T4.",
|
tests/unit/agents/test_audio_refiner.py
ADDED
|
@@ -0,0 +1,306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unit tests for AudioRefiner agent."""
|
| 2 |
+
|
| 3 |
+
import pytest
|
| 4 |
+
from unittest.mock import AsyncMock, Mock, patch
|
| 5 |
+
|
| 6 |
+
from src.agents.audio_refiner import AudioRefiner, refine_text_for_audio
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class TestAudioRefiner:
|
| 10 |
+
"""Test suite for AudioRefiner functionality."""
|
| 11 |
+
|
| 12 |
+
@pytest.fixture
|
| 13 |
+
def refiner(self):
|
| 14 |
+
"""Create AudioRefiner instance."""
|
| 15 |
+
return AudioRefiner()
|
| 16 |
+
|
| 17 |
+
def test_remove_markdown_headers(self, refiner):
|
| 18 |
+
"""Test removal of markdown headers."""
|
| 19 |
+
text = """# Main Title
|
| 20 |
+
## Subtitle
|
| 21 |
+
### Section
|
| 22 |
+
Content here"""
|
| 23 |
+
result = refiner._remove_markdown_syntax(text)
|
| 24 |
+
assert "#" not in result
|
| 25 |
+
assert "Main Title" in result
|
| 26 |
+
assert "Subtitle" in result
|
| 27 |
+
|
| 28 |
+
def test_remove_bold_italic(self, refiner):
|
| 29 |
+
"""Test removal of bold and italic formatting."""
|
| 30 |
+
text = "**Bold text** and *italic text* and __another bold__"
|
| 31 |
+
result = refiner._remove_markdown_syntax(text)
|
| 32 |
+
assert "**" not in result
|
| 33 |
+
assert "*" not in result
|
| 34 |
+
assert "__" not in result
|
| 35 |
+
assert "Bold text" in result
|
| 36 |
+
assert "italic text" in result
|
| 37 |
+
|
| 38 |
+
def test_remove_links(self, refiner):
|
| 39 |
+
"""Test removal of markdown links."""
|
| 40 |
+
text = "Check [this link](https://example.com) for details"
|
| 41 |
+
result = refiner._remove_markdown_syntax(text)
|
| 42 |
+
assert "[" not in result
|
| 43 |
+
assert "]" not in result
|
| 44 |
+
assert "https://" not in result
|
| 45 |
+
assert "this link" in result
|
| 46 |
+
|
| 47 |
+
def test_remove_citations_numbered(self, refiner):
|
| 48 |
+
"""Test removal of numbered citations."""
|
| 49 |
+
text = "Research shows [1] that metformin [2,3] works [4-6]."
|
| 50 |
+
result = refiner._remove_citations(text)
|
| 51 |
+
assert "[1]" not in result
|
| 52 |
+
assert "[2,3]" not in result
|
| 53 |
+
assert "[4-6]" not in result
|
| 54 |
+
assert "Research shows" in result
|
| 55 |
+
|
| 56 |
+
def test_remove_citations_author_year(self, refiner):
|
| 57 |
+
"""Test removal of author-year citations."""
|
| 58 |
+
text = "Studies (Smith et al., 2023) and (Jones, 2022) confirm this."
|
| 59 |
+
result = refiner._remove_citations(text)
|
| 60 |
+
assert "(Smith et al., 2023)" not in result
|
| 61 |
+
assert "(Jones, 2022)" not in result
|
| 62 |
+
assert "Studies" in result
|
| 63 |
+
assert "confirm this" in result
|
| 64 |
+
|
| 65 |
+
def test_remove_first_references_section(self, refiner):
|
| 66 |
+
"""Test that References sections are removed while preserving other content."""
|
| 67 |
+
text = """Main content here.
|
| 68 |
+
|
| 69 |
+
# References
|
| 70 |
+
[1] First reference
|
| 71 |
+
[2] Second reference
|
| 72 |
+
|
| 73 |
+
# More Content
|
| 74 |
+
This should remain.
|
| 75 |
+
|
| 76 |
+
## References
|
| 77 |
+
This second References should also be removed."""
|
| 78 |
+
|
| 79 |
+
result = refiner._remove_references_sections(text)
|
| 80 |
+
assert "Main content here" in result
|
| 81 |
+
assert "References" not in result
|
| 82 |
+
assert "First reference" not in result
|
| 83 |
+
assert "More Content" in result # Content after References should be preserved
|
| 84 |
+
assert "This should remain" in result
|
| 85 |
+
assert "second References should also be removed" not in result # Second References section removed
|
| 86 |
+
|
| 87 |
+
def test_roman_to_int_conversion(self, refiner):
|
| 88 |
+
"""Test roman numeral to integer conversion."""
|
| 89 |
+
assert refiner._roman_to_int("I") == 1
|
| 90 |
+
assert refiner._roman_to_int("II") == 2
|
| 91 |
+
assert refiner._roman_to_int("III") == 3
|
| 92 |
+
assert refiner._roman_to_int("IV") == 4
|
| 93 |
+
assert refiner._roman_to_int("V") == 5
|
| 94 |
+
assert refiner._roman_to_int("IX") == 9
|
| 95 |
+
assert refiner._roman_to_int("X") == 10
|
| 96 |
+
assert refiner._roman_to_int("XII") == 12
|
| 97 |
+
assert refiner._roman_to_int("XX") == 20
|
| 98 |
+
|
| 99 |
+
def test_int_to_word_conversion(self, refiner):
|
| 100 |
+
"""Test integer to word conversion."""
|
| 101 |
+
assert refiner._int_to_word(1) == "One"
|
| 102 |
+
assert refiner._int_to_word(2) == "Two"
|
| 103 |
+
assert refiner._int_to_word(3) == "Three"
|
| 104 |
+
assert refiner._int_to_word(10) == "Ten"
|
| 105 |
+
assert refiner._int_to_word(20) == "Twenty"
|
| 106 |
+
assert refiner._int_to_word(25) == "25" # Falls back to digit
|
| 107 |
+
|
| 108 |
+
def test_convert_roman_numerals_with_context(self, refiner):
|
| 109 |
+
"""Test roman numeral conversion with context words."""
|
| 110 |
+
test_cases = [
|
| 111 |
+
("Phase I trial", "Phase One trial"),
|
| 112 |
+
("Phase II study", "Phase Two study"),
|
| 113 |
+
("Phase III data", "Phase Three data"),
|
| 114 |
+
("Type I diabetes", "Type One diabetes"),
|
| 115 |
+
("Type II error", "Type Two error"),
|
| 116 |
+
("Stage IV cancer", "Stage Four cancer"),
|
| 117 |
+
("Trial I results", "Trial One results"),
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
for input_text, expected in test_cases:
|
| 121 |
+
result = refiner._convert_roman_numerals(input_text)
|
| 122 |
+
assert expected in result, f"Failed for: {input_text}"
|
| 123 |
+
|
| 124 |
+
def test_convert_standalone_roman_numerals(self, refiner):
|
| 125 |
+
"""Test standalone roman numeral conversion."""
|
| 126 |
+
text = "Results for I, II, and III are positive."
|
| 127 |
+
result = refiner._convert_roman_numerals(text)
|
| 128 |
+
# Standalone roman numerals should be converted
|
| 129 |
+
assert "One" in result or "Two" in result or "Three" in result
|
| 130 |
+
|
| 131 |
+
def test_dont_convert_roman_in_words(self, refiner):
|
| 132 |
+
"""Test that roman numerals inside words aren't converted."""
|
| 133 |
+
text = "INVALID data fromIXIN compound"
|
| 134 |
+
result = refiner._convert_roman_numerals(text)
|
| 135 |
+
# Should not break words containing I, V, X, etc.
|
| 136 |
+
assert "INVALID" in result or "Invalid" in result # May be case-normalized
|
| 137 |
+
|
| 138 |
+
def test_clean_special_characters(self, refiner):
|
| 139 |
+
"""Test special character cleanup."""
|
| 140 |
+
# Using unicode escapes to avoid syntax issues
|
| 141 |
+
text = "Text with \u2014 em-dash and \u201csmart quotes\u201d and \u2018apostrophes\u2019."
|
| 142 |
+
result = refiner._clean_special_characters(text)
|
| 143 |
+
assert "\u2014" not in result # em-dash
|
| 144 |
+
assert "\u201c" not in result # smart quote open
|
| 145 |
+
assert "\u2018" not in result # smart apostrophe
|
| 146 |
+
assert "-" in result
|
| 147 |
+
|
| 148 |
+
def test_normalize_whitespace(self, refiner):
|
| 149 |
+
"""Test whitespace normalization."""
|
| 150 |
+
text = "Text with multiple spaces\n\n\n\nand many newlines"
|
| 151 |
+
result = refiner._normalize_whitespace(text)
|
| 152 |
+
assert " " not in result # No double spaces
|
| 153 |
+
assert "\n\n\n" not in result # Max two newlines
|
| 154 |
+
|
| 155 |
+
async def test_full_refine_workflow(self, refiner):
|
| 156 |
+
"""Test complete refinement workflow."""
|
| 157 |
+
markdown_text = """# Summary
|
| 158 |
+
|
| 159 |
+
**Metformin** shows promise for *long COVID* treatment [1].
|
| 160 |
+
|
| 161 |
+
## Phase I Trials
|
| 162 |
+
|
| 163 |
+
Research (Smith et al., 2023) indicates [2,3]:
|
| 164 |
+
- 50% improvement
|
| 165 |
+
- Low side effects
|
| 166 |
+
|
| 167 |
+
Check [this study](https://example.com) for details.
|
| 168 |
+
|
| 169 |
+
# References
|
| 170 |
+
[1] Smith, J. et al. (2023)
|
| 171 |
+
[2] Jones, K. (2022)
|
| 172 |
+
"""
|
| 173 |
+
|
| 174 |
+
result = await refiner.refine_for_audio(markdown_text)
|
| 175 |
+
|
| 176 |
+
# Check markdown removed
|
| 177 |
+
assert "#" not in result
|
| 178 |
+
assert "**" not in result
|
| 179 |
+
assert "*" not in result
|
| 180 |
+
|
| 181 |
+
# Check citations removed
|
| 182 |
+
assert "[1]" not in result
|
| 183 |
+
assert "(Smith et al., 2023)" not in result
|
| 184 |
+
|
| 185 |
+
# Check roman numerals converted
|
| 186 |
+
assert "Phase One" in result
|
| 187 |
+
|
| 188 |
+
# Check references section removed
|
| 189 |
+
assert "References" not in result
|
| 190 |
+
assert "Smith, J. et al." not in result
|
| 191 |
+
|
| 192 |
+
# Check content preserved
|
| 193 |
+
assert "Metformin" in result
|
| 194 |
+
assert "long COVID" in result
|
| 195 |
+
|
| 196 |
+
async def test_convenience_function(self):
|
| 197 |
+
"""Test convenience function."""
|
| 198 |
+
text = "**Bold** text with [link](url)"
|
| 199 |
+
result = await refine_text_for_audio(text)
|
| 200 |
+
assert "**" not in result
|
| 201 |
+
assert "[link]" not in result
|
| 202 |
+
assert "Bold" in result
|
| 203 |
+
|
| 204 |
+
async def test_empty_text(self, refiner):
|
| 205 |
+
"""Test handling of empty text."""
|
| 206 |
+
assert await refiner.refine_for_audio("") == ""
|
| 207 |
+
assert await refiner.refine_for_audio(" ") == ""
|
| 208 |
+
|
| 209 |
+
async def test_no_references_section(self, refiner):
|
| 210 |
+
"""Test text without References section."""
|
| 211 |
+
text = "Main content without references."
|
| 212 |
+
result = await refiner.refine_for_audio(text)
|
| 213 |
+
assert "Main content without references" in result
|
| 214 |
+
|
| 215 |
+
def test_multiple_reference_formats(self, refiner):
|
| 216 |
+
"""Test different References section formats."""
|
| 217 |
+
formats = [
|
| 218 |
+
("# References\nContent", True), # Markdown header - will be removed
|
| 219 |
+
("## References\nContent", True), # Markdown header - will be removed
|
| 220 |
+
("**References**\nContent", True), # Bold heading - will be removed
|
| 221 |
+
("References:\nContent", False), # Standalone without markers - NOT removed (edge case)
|
| 222 |
+
]
|
| 223 |
+
|
| 224 |
+
for format_text, should_remove in formats:
|
| 225 |
+
text = f"Main content\n{format_text}"
|
| 226 |
+
result = refiner._remove_references_sections(text)
|
| 227 |
+
assert "Main content" in result
|
| 228 |
+
if should_remove:
|
| 229 |
+
assert "References" not in result or result.count("References") == 0
|
| 230 |
+
# Standalone "References:" without markers is an edge case we don't handle
|
| 231 |
+
|
| 232 |
+
def test_preserve_paragraph_structure(self, refiner):
|
| 233 |
+
"""Test that paragraph structure is preserved."""
|
| 234 |
+
text = "First paragraph.\n\nSecond paragraph.\n\nThird paragraph."
|
| 235 |
+
|
| 236 |
+
result = refiner._normalize_whitespace(text)
|
| 237 |
+
# Should have paragraph breaks (double newlines)
|
| 238 |
+
assert "\n\n" in result
|
| 239 |
+
# But not excessive newlines
|
| 240 |
+
assert "\n\n\n" not in result
|
| 241 |
+
|
| 242 |
+
@patch('src.agents.audio_refiner.get_pydantic_ai_model')
|
| 243 |
+
async def test_llm_polish_disabled_by_default(self, mock_get_model, refiner):
|
| 244 |
+
"""Test that LLM polish is not called by default."""
|
| 245 |
+
text = "Test text"
|
| 246 |
+
result = await refiner.refine_for_audio(text, use_llm_polish=False)
|
| 247 |
+
|
| 248 |
+
# LLM should not be called when disabled
|
| 249 |
+
mock_get_model.assert_not_called()
|
| 250 |
+
assert "Test text" in result
|
| 251 |
+
|
| 252 |
+
@patch('src.agents.audio_refiner.Agent')
|
| 253 |
+
@patch('src.agents.audio_refiner.get_pydantic_ai_model')
|
| 254 |
+
async def test_llm_polish_enabled(self, mock_get_model, mock_agent_class, refiner):
|
| 255 |
+
"""Test that LLM polish is called when enabled."""
|
| 256 |
+
# Setup mock
|
| 257 |
+
mock_model = Mock()
|
| 258 |
+
mock_get_model.return_value = mock_model
|
| 259 |
+
|
| 260 |
+
mock_agent_instance = Mock()
|
| 261 |
+
mock_result = Mock()
|
| 262 |
+
mock_result.output = "Polished text"
|
| 263 |
+
mock_agent_instance.run = AsyncMock(return_value=mock_result)
|
| 264 |
+
mock_agent_class.return_value = mock_agent_instance
|
| 265 |
+
|
| 266 |
+
# Test with LLM polish enabled
|
| 267 |
+
text = "**Test** text"
|
| 268 |
+
result = await refiner.refine_for_audio(text, use_llm_polish=True)
|
| 269 |
+
|
| 270 |
+
# Verify LLM was called
|
| 271 |
+
mock_get_model.assert_called_once()
|
| 272 |
+
mock_agent_class.assert_called_once()
|
| 273 |
+
mock_agent_instance.run.assert_called_once()
|
| 274 |
+
|
| 275 |
+
assert result == "Polished text"
|
| 276 |
+
|
| 277 |
+
@patch('src.agents.audio_refiner.Agent')
|
| 278 |
+
@patch('src.agents.audio_refiner.get_pydantic_ai_model')
|
| 279 |
+
async def test_llm_polish_graceful_fallback(self, mock_get_model, mock_agent_class, refiner):
|
| 280 |
+
"""Test graceful fallback when LLM polish fails."""
|
| 281 |
+
# Setup mock to raise exception
|
| 282 |
+
mock_get_model.return_value = Mock()
|
| 283 |
+
mock_agent_instance = Mock()
|
| 284 |
+
mock_agent_instance.run = AsyncMock(side_effect=Exception("API Error"))
|
| 285 |
+
mock_agent_class.return_value = mock_agent_instance
|
| 286 |
+
|
| 287 |
+
# Test with LLM polish enabled but failing
|
| 288 |
+
text = "Test text"
|
| 289 |
+
result = await refiner.refine_for_audio(text, use_llm_polish=True)
|
| 290 |
+
|
| 291 |
+
# Should fall back to rule-based output
|
| 292 |
+
assert "Test text" in result
|
| 293 |
+
assert result != "" # Should not be empty
|
| 294 |
+
|
| 295 |
+
async def test_convenience_function_with_llm_polish(self):
|
| 296 |
+
"""Test convenience function with LLM polish parameter."""
|
| 297 |
+
with patch.object(AudioRefiner, 'refine_for_audio') as mock_refine:
|
| 298 |
+
mock_refine.return_value = AsyncMock(return_value="Refined text")()
|
| 299 |
+
|
| 300 |
+
# Test without LLM polish
|
| 301 |
+
result = await refine_text_for_audio("Test", use_llm_polish=False)
|
| 302 |
+
mock_refine.assert_called_with("Test", use_llm_polish=False)
|
| 303 |
+
|
| 304 |
+
# Test with LLM polish
|
| 305 |
+
result = await refine_text_for_audio("Test", use_llm_polish=True)
|
| 306 |
+
mock_refine.assert_called_with("Test", use_llm_polish=True)
|