Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,16 +28,15 @@ if "vector_store" not in st.session_state:
|
|
| 28 |
st.session_state.vector_store = None
|
| 29 |
if "documents" not in st.session_state:
|
| 30 |
st.session_state.documents = None
|
| 31 |
-
if "
|
| 32 |
-
st.session_state.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
# Step 1: Choose PDF Source
|
| 35 |
-
pdf_source = st.radio(
|
| 36 |
-
"Upload or provide a link to a PDF:",
|
| 37 |
-
["Upload a PDF file", "Enter a PDF URL"],
|
| 38 |
-
index=0,
|
| 39 |
-
horizontal=True
|
| 40 |
-
)
|
| 41 |
|
| 42 |
pdf_path = None
|
| 43 |
if pdf_source == "Upload a PDF file":
|
|
@@ -47,7 +46,9 @@ if pdf_source == "Upload a PDF file":
|
|
| 47 |
with open(pdf_path, "wb") as f:
|
| 48 |
f.write(uploaded_file.getbuffer())
|
| 49 |
st.success("β
PDF Uploaded Successfully!")
|
| 50 |
-
st.session_state.
|
|
|
|
|
|
|
| 51 |
|
| 52 |
elif pdf_source == "Enter a PDF URL":
|
| 53 |
pdf_url = st.text_input("Enter PDF URL:")
|
|
@@ -60,44 +61,50 @@ elif pdf_source == "Enter a PDF URL":
|
|
| 60 |
with open(pdf_path, "wb") as f:
|
| 61 |
f.write(response.content)
|
| 62 |
st.success("β
PDF Downloaded Successfully!")
|
| 63 |
-
st.session_state.
|
|
|
|
|
|
|
| 64 |
else:
|
| 65 |
st.error("β Failed to download PDF. Check the URL.")
|
| 66 |
except Exception as e:
|
| 67 |
st.error(f"Error downloading PDF: {e}")
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
with st.spinner("Loading and processing PDF..."):
|
| 73 |
loader = PDFPlumberLoader(pdf_path)
|
| 74 |
docs = loader.load()
|
|
|
|
|
|
|
| 75 |
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
query = st.text_input("π Enter a Query:")
|
| 102 |
if query:
|
| 103 |
with st.spinner("Retrieving relevant contexts..."):
|
|
@@ -145,5 +152,14 @@ if st.session_state.vector_store:
|
|
| 145 |
st.subheader("π₯ RAG Final Response")
|
| 146 |
st.success(final_response['final_response'])
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
else:
|
| 149 |
st.warning("π Please upload or provide a PDF URL first.")
|
|
|
|
| 28 |
st.session_state.vector_store = None
|
| 29 |
if "documents" not in st.session_state:
|
| 30 |
st.session_state.documents = None
|
| 31 |
+
if "pdf_loaded" not in st.session_state:
|
| 32 |
+
st.session_state.pdf_loaded = False
|
| 33 |
+
if "chunked" not in st.session_state:
|
| 34 |
+
st.session_state.chunked = False
|
| 35 |
+
if "vector_created" not in st.session_state:
|
| 36 |
+
st.session_state.vector_created = False
|
| 37 |
|
| 38 |
+
# Step 1: Choose PDF Source
|
| 39 |
+
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
pdf_path = None
|
| 42 |
if pdf_source == "Upload a PDF file":
|
|
|
|
| 46 |
with open(pdf_path, "wb") as f:
|
| 47 |
f.write(uploaded_file.getbuffer())
|
| 48 |
st.success("β
PDF Uploaded Successfully!")
|
| 49 |
+
st.session_state.pdf_loaded = False
|
| 50 |
+
st.session_state.chunked = False
|
| 51 |
+
st.session_state.vector_created = False
|
| 52 |
|
| 53 |
elif pdf_source == "Enter a PDF URL":
|
| 54 |
pdf_url = st.text_input("Enter PDF URL:")
|
|
|
|
| 61 |
with open(pdf_path, "wb") as f:
|
| 62 |
f.write(response.content)
|
| 63 |
st.success("β
PDF Downloaded Successfully!")
|
| 64 |
+
st.session_state.pdf_loaded = False
|
| 65 |
+
st.session_state.chunked = False
|
| 66 |
+
st.session_state.vector_created = False
|
| 67 |
else:
|
| 68 |
st.error("β Failed to download PDF. Check the URL.")
|
| 69 |
except Exception as e:
|
| 70 |
st.error(f"Error downloading PDF: {e}")
|
| 71 |
|
| 72 |
+
# Step 2: Process PDF
|
| 73 |
+
if pdf_path and not st.session_state.pdf_loaded:
|
| 74 |
+
with st.spinner("Loading PDF..."):
|
|
|
|
| 75 |
loader = PDFPlumberLoader(pdf_path)
|
| 76 |
docs = loader.load()
|
| 77 |
+
st.session_state.documents = docs
|
| 78 |
+
st.session_state.pdf_loaded = True
|
| 79 |
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
| 80 |
|
| 81 |
+
# Step 3: Chunking (Only if Not Already Done)
|
| 82 |
+
if st.session_state.pdf_loaded and not st.session_state.chunked:
|
| 83 |
+
with st.spinner("Chunking the document..."):
|
| 84 |
+
model_name = "nomic-ai/modernbert-embed-base"
|
| 85 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
|
| 86 |
+
text_splitter = SemanticChunker(embedding_model)
|
| 87 |
+
documents = text_splitter.split_documents(st.session_state.documents)
|
| 88 |
+
st.session_state.documents = documents
|
| 89 |
+
st.session_state.chunked = True
|
| 90 |
+
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
| 91 |
+
|
| 92 |
+
# Step 4: Setup Vectorstore
|
| 93 |
+
if st.session_state.chunked and not st.session_state.vector_created:
|
| 94 |
+
with st.spinner("Creating vector store..."):
|
| 95 |
+
vector_store = Chroma(
|
| 96 |
+
collection_name="deepseek_collection",
|
| 97 |
+
collection_metadata={"hnsw:space": "cosine"},
|
| 98 |
+
embedding_function=embedding_model
|
| 99 |
+
)
|
| 100 |
+
vector_store.add_documents(st.session_state.documents)
|
| 101 |
+
num_documents = len(vector_store.get()["documents"])
|
| 102 |
+
st.session_state.vector_store = vector_store
|
| 103 |
+
st.session_state.vector_created = True
|
| 104 |
+
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
| 105 |
+
|
| 106 |
+
# Step 5: Query Input
|
| 107 |
+
if st.session_state.vector_created:
|
| 108 |
query = st.text_input("π Enter a Query:")
|
| 109 |
if query:
|
| 110 |
with st.spinner("Retrieving relevant contexts..."):
|
|
|
|
| 152 |
st.subheader("π₯ RAG Final Response")
|
| 153 |
st.success(final_response['final_response'])
|
| 154 |
|
| 155 |
+
# Final + Intermediate Outputs
|
| 156 |
+
st.subheader("π **Full Workflow Breakdown:**")
|
| 157 |
+
st.json({
|
| 158 |
+
"Context Relevancy Evaluation": relevancy_response["relevancy_response"],
|
| 159 |
+
"Relevant Contexts": relevant_response["context_number"],
|
| 160 |
+
"Extracted Contexts": final_contexts["relevant_contexts"],
|
| 161 |
+
"Final Answer": final_response["final_response"]
|
| 162 |
+
})
|
| 163 |
+
|
| 164 |
else:
|
| 165 |
st.warning("π Please upload or provide a PDF URL first.")
|