File size: 68,765 Bytes
5ab87e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 |
import re
import os
import json
import requests
import time
from typing import List, Optional, Dict
from .prompts import DEEPRESEARCH_SYS_PROMPT, SUMMARY_SYS_PROMPT
from functools import wraps
from together import Together # pip install together
from datetime import datetime # needed for retries / logging and date string (for giving current date and time to LLM)
# return decorator
def retry(max: int = 10, sleep: int = 1, fallback=None):
"""
Retry `max` times and, if still failing, return `fallback`
instead of raising. This keeps outer loops alive.
"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for i in range(max):
try:
return func(*args, **kwargs)
except Exception as e:
print(f"[retry] attempt {i+1}/{max} failed: {e}")
if i == max - 1: # last try exhausted
print(f"[retry] giving up β returning {fallback!r}")
return fallback # β swallow the error
if sleep:
time.sleep(sleep)
return wrapper
return decorator
class ReCall():
date_str = \
f"""
**Note**: Today's Date is {datetime.now().strftime("%Y-%m-%d")}, and time is {datetime.now().strftime("%H:%M:%S")}. This may be useful for answering questions about current events."""
anti_chinese_str = \
"""
**Note**: Do not respond in chinese, do not think in chinese, only think and respond/answer in English, unless explicitly instructed by the user to respond in some other language."""
# proper_formatting_str = \
# """
# **Note**: Provide a well-structured answer first, then put only the final short answer in \\boxed{{}}.
# **How to format your response**
# - Write in clear English prose and use Markdown headings/bullets where helpful.
# - Give a detailed, in-depth explanation of the steps or facts used.
# - Use LaTeX only for short formulas/equations. For multi-line LaTeX, include line breaks (\\\\) or environments like \\begin{{align}} ... \\end{{align}} when genuinely helpful.
# - Do **not** wrap the whole response in LaTeX. Only the final short answer goes in \\boxed{{...}} on its own line at the end.
# **Examples**
# 1) **Simple fact question**
# **Question:** What is the capital of India?
# **Brief rationale:** Indiaβs seat of government and primary national institutions are located in New Delhi.
# **Final:** \\boxed{{New Delhi}}
# 2) **Quick calculation**
# **Question:** Convert 68^\\circ F to Celsius.
# **Approach:** Use C = (F - 32) \\times \\tfrac{{5}}{{9}}.
# **Computation:** (68 - 32) \\times \\tfrac{{5}}{{9}} = 20.
# **Final:** \\boxed{{20^\\circ C}}
# 3) **Search & synthesis (structured, detailed)**
# **Question:** When did the EUβs GDPR go into effect?
# **Complete Final Response:**
# '''**Key findings (evidence, concise):**
# - **European Commission overview** states GDPR βapplies from 25 May 2018.β
# - **EUR-Lex (Regulation (EU) 2016/679), Article 99**: entered into force 20 days after publication in the OJ (2016), and **applies from 25 May 2018**.
# - **EDPB FAQs/communications** reiterate that enforcement/application begins **25 May 2018**.
# **Cross-check & validation:**
# - Independent primary sources (Commission portal and EUR-Lex) agree on the same application date. A supervisory body source (EDPB) corroborates.
# **Common pitfalls addressed:**
# - Some secondary blogs list **24 May 2018**βthis confuses the **last day before** applicability with the first day **of** applicability.
# - βEntered into forceβ in **2016** (post-publication) is not the same as βapplication/effective for obligations,β which is **2018**.
# **Date normalization:**
# - Normalize to an unambiguous calendar date and present in a clear format (e.g., βMay 25, 2018β).
# **Conclusion:**
# - The effective (application) date for GDPR obligations across the EU is the same in all Member States and is confirmed by multiple primary sources.
# **Final:** \\boxed{{May\ 25,\ 2018}}'''
# """
# print(f"Date string:\n'{date_str}'")
# proper_formatting_str = \
# """
# **DeepResearch Response Protocol**
# Provide a comprehensive, decision-grade report first, then put only the short final answer in \\boxed{{}} on its own line at the very end.
# ---
# ## Mandatory Sections (in order)
# 1) **Executive Summary**
# - 5β10 bullets capturing the direct answer, key numbers/dates, and the top implications.
# - Include any material uncertainty (e.g., βmoderate confidence due to limited primary dataβ).
# 2) **Problem Framing & Scope**
# - One short paragraph restating the question, goals, and audience.
# - Clarify interpretations, exclusions, and assumptions. Define key terms and acronyms.
# 3) **Method (Search & Validation Plan)**
# - 5β8 bullets detailing how you searched and validated. Include:
# - **Source priority:** primary/official (laws, filings, standards, regulator notices) β reputable secondary (major outlets, respected orgs) β tertiary/background.
# - **Query strategy:** main queries and alternates (synonyms, regional spellings, technical names).
# - **Freshness policy:** prefer the most recent authoritative updates; when dates matter, distinguish **event date**, **publication/update date**, and **effective date**.
# - **Triangulation rule:** corroborate all key claims with β₯2 independent reputable sources (or 1 clear primary).
# - **Inclusion/Exclusion:** note discarded sources (paywalled, low quality, self-published without review) and why.
# - **Conflict resolution:** how disagreements will be weighed (mandate, jurisdiction, methodological rigor, recency).
# 4) **Evidence Ledger (Cited Facts)**
# - 6β15 bullets. Each bullet is a **Fact Card**:
# - **Claim:** one-sentence fact.
# - **Evidence:** short quote/figure/line (paraphrase unless a short quote is essential).
# - **Source:** Publisher/Title β (Event Date if applicable) β Publish/Update Date β Access Date.
# - **Confidence:** High / Medium / Low.
# - Group with mini-subheadings where helpful (e.g., βOfficial noticesβ, βRegulatory filingsβ, βPress coverageβ).
# - Explicitly flag contradictions.
# 5) **Timeline of Key Events**
# - A compact, chronological list linking milestones to sources; include both event and publication dates where relevant.
# 6) **Data Extraction & Normalization** (as needed)
# - Present important numbers in a small table (β€8 rows) with units, currency (ISO codes, e.g., **USD**), and rounding policy (state precision, e.g., βrounded to 2 decimalsβ).
# - Perform any conversions or calculations and show formulas succinctly (LaTeX inline for short formulas, e.g., \\( C = (F-32)\\times\\tfrac{{5}}{{9}} \\); use \\begin{{align}}β¦\\end{{align}} for multi-step math).
# - Specify timezones for dates/times when relevant.
# 7) **Comparative & Sensitivity Analysis** (if applicable)
# - Contrast competing interpretations, options, or sources; note trade-offs.
# - Include a brief sensitivity or scenario check if a key parameter could materially change the conclusion.
# 8) **Synthesis & Conclusion**
# - 2β4 tight paragraphs that integrate the evidence, resolve conflicts, and explain *why* the conclusion follows.
# - Be explicit about scope limits and residual uncertainties.
# 9) **Risks, Caveats & Unknowns**
# - Bullet the major risks, data gaps, and what would most change the answer.
# - Note any ethical, legal, or safety considerations.
# 10) **Recommendations / Next Steps** (if applicable)
# - Actionable items tailored to the userβs likely goal (e.g., verify with regulator X, monitor source Y weekly, collect dataset Z).
# 11) **Answer (one sentence)**
# - State the direct answer clearly with units/timezone as needed.
# 12) **Final**
# - Repeat only the short final answer inside \\boxed{{...}} with no extra words.
# 13) **Source Log (Audit Trail)**
# - A compact, reproducible list: *Title β Publisher/Author β (Event Date, if any) β Publish/Update Date β Access Date β URL*.
# - Prefer diverse, authoritative domains; avoid duplicates.
# ---
# ## Formatting & Quality Rules
# - Use clear English with Markdown headings and bullets; favor short paragraphs.
# - Do **not** reveal inner monologue or hidden chain-of-thought; provide only public-facing rationale.
# - Use LaTeX sparingly for math; do **not** wrap the entire response in LaTeX. Only the final short answer goes in \\boxed{{...}}.
# - Always specify units, currency codes, and timezones when relevant.
# - When listing β₯3 items or comparing options, include a small, focused table rather than long prose.
# - If information is uncertain or contested, *quantify* the uncertainty (confidence labels or ranges) and state why.
# ---
# ## Depth & Completeness Expectations
# - **Complex/high-stakes queries**: Populate all sections thoroughly; provide triangulated citations and explicit conflict resolution.
# - **Simple fact queries**: Keep Sections 3β9 concise (one to two lines each) but still cite at least one authoritative source.
# - Strive for neutrality, reproducibility, and decision usefulness over verbosity.
# ---
# """
proper_formatting_str = """"""
sys_prompt_non_search = """You are a helpful assistant. You will answer the user's question based on your knowledge and reasoning ability. You do not have access to the internet or any external tools. Do not use search. Answer all questions yourself.""" + date_str + anti_chinese_str
sys_prompt_websailor_start = """
You are a Web Information Seeking Master. Your task is to thoroughly seek the internet for information and provide accurate answers to questions. No matter how complex the query, you will not give up until you find the corresponding information.
In this environment you have access to a set of tools you can use to assist with the user query.
You may perform multiple rounds of function calls. In each round, you can call one or more functions.
As you proceed, adhere to the following principles:
1. **Persistent Actions for Answers**: You will engage in many interactions, delving deeply into the topic to explore all possible aspects until a satisfactory answer is found.
2. **Repeated Verification**: Before presenting a Final Answer, you will **cross-check** and **validate the information** you've gathered to confirm its accuracy and reliability.
3. **Attention to Detail**: You will carefully analyze each information source to ensure that all data is current, relevant, and from credible origins."""
sys_prompt_websailor = """
You are a Web Information Seeking Master. Your task is to thoroughly seek the internet for information and provide accurate answers to questions. No matter how complex the query, you will not give up until you find the corresponding information.
In this environment you have access to a set of tools you can use to assist with the user query.
You may perform multiple rounds of function calls. In each round, you can call one or more functions.
As you proceed, adhere to the following principles:
1. **Persistent Actions for Answers**: You will engage in many interactions, delving deeply into the topic to explore all possible aspects until a satisfactory answer is found.
2. **Repeated Verification**: Before presenting a Final Answer, you will **cross-check** and **validate the information** you've gathered to confirm its accuracy and reliability.
3. **Attention to Detail**: You will carefully analyze each information source to ensure that all data is current, relevant, and from credible origins.
Here are available functions in JSONSchema format: \n```json\n{func_schemas}\n```
In your response, you need to first think about the reasoning process in the mind and then conduct function calling to get the information or perform the actions if needed. \
The reasoning process and function calling are enclosed within <think> </think> and <tool_call> </tool_call> tags. \
The results of the function calls will be given back to you after execution, \
and you can continue to call functions until you get the final answer for the user's question.
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>
""" + date_str + anti_chinese_str + proper_formatting_str
sys_prompt_websailor_deepseek = """
You are a Web Information Seeking Master. Your task is to thoroughly seek the internet for information and provide accurate answers to questions. No matter how complex the query, you will not give up until you find the corresponding information.
In this environment you have access to a set of tools you can use to assist with the user query.
You may perform multiple rounds of function calls. In each round, you can call one or more functions.
As you proceed, adhere to the following principles:
1. **Persistent Actions for Answers**: You will engage in many interactions, delving deeply into the topic to explore all possible aspects until a satisfactory answer is found.
2. **Repeated Verification**: Before presenting a Final Answer, you will **cross-check** and **validate the information** you've gathered to confirm its accuracy and reliability.
3. **Attention to Detail**: You will carefully analyze each information source to ensure that all data is current, relevant, and from credible origins.
Here are available functions in JSONSchema format: \n```json\n{func_schemas}\n```
In your response, you need to first think about the reasoning process in the mind and then conduct function calling to get the information or perform the actions if needed. \
The reasoning process and function calling are enclosed within <think> </think> and <tool_calls_begin> <tool_calls_end> tags. \
The results of the function calls will be given back to you after execution, \
and you can continue to call functions until you get the final answer for the user's question. \
Finally, if you have got the answer, enclose it within \\boxed{{}} with latex format and do not continue to call functions, \
i.e., <think> Based on the response from the function call, I get the weather information. </think> The weather in Beijing on 2025-04-01 is \\[ \\boxed{{20C}} \\].
""" + date_str + anti_chinese_str + proper_formatting_str
# sys_prompt_websailor_deepseek = """
# You are a Web Information Seeking Master. Seek the internet thoroughly and provide accurate answers. You may use tools multiple times.
# Principles:
# 1) Persistent Actions for Answers: explore deeply until you find satisfactory information.
# 2) Repeated Verification: cross-check and validate before the final answer.
# 3) Attention to Detail: ensure sources are current, relevant, and credible.
# You have the following tools (JSONSchema):
# ```json
# {func_schemas}
# Follow this EXACT tool-call I/O protocol.
# TO CALL ONE OR MORE TOOLS:
# Respond only with this block (no extra text before/after):
# <ο½toolβcallβbeginο½>function<ο½toolβsepο½>{tool_name}{args_json}
# <ο½toolβcallβendο½>
# ... (repeat <ο½toolβcallβbeginο½>β¦<ο½toolβcallβendο½> for multiple tools)
# <ο½toolβcallsβendο½><ο½endβofβsentenceο½>
# HOW TOOL RESULTS ARRIVE:
# I will send tool outputs back embedded inside a single user message, each wrapped like:
# <tool_response>{one_tool_call_you_made}
# {tool_return_text_or_json}
# </tool_response>
# WHAT TO DO NEXT:
# If you still need info, emit another tool-calls block (same exact format).
# If you have the final answer, output:
# <answer> β¦your final answerβ¦ </answer>
# and DO NOT call any more tools.
# Important:
# Do not expose your internal reasoning; keep thoughts private.
# When emitting a tool-calls block, do not include any explanations, only the block specified above.
# Arguments must be valid JSON.
# Stop tokens to respect: <ο½endβofβsentenceο½>
# """
system_prompt = """In this environment you have access to a set of tools you can use to assist with the user query. \
You may perform multiple rounds of function calls. \
In each round, you can call one or more functions. \
Here are available functions in JSONSchema format: \n```json\n{func_schemas}\n```
In your response, you need to first think about the reasoning process in the mind and then conduct function calling to get the information or perform the actions if needed. \
The reasoning process and function calling are enclosed within <think> </think> and <tool_call> </tool_call> tags. \
The results of the function calls will be given back to you after execution, \
and you can continue to call functions until you get the final answer for the user's question. You are encouraged to utilize as many function calls as possible. \
Finally, if you have got the answer, wrap it in <answer> </answer> **and do not call any more functions**, \
e.g. <think> Based on the tool results β¦ </think> <answer>20 Β°C</answer>.
For each function call, return a JSON object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{{"name": <function-name-1>, "arguments": <args-json-object>}}
</tool_call>""" + date_str + anti_chinese_str + proper_formatting_str
system_prompt_budget = """
You are an autonomous reasoning agent with access to external tools.
The conversation will retain only the *most-recent* <tool_response> block; older ones disappear.
As soon as you receive tool results, extract the *essential facts tables links etc* that might be needed for later and restate them inside your <think> section.
β**Never copy large bodies of text** or raw JSON from tool output into your visible reply; summarise instead.
β **Workflow**
1. In every round, start with <think> β¦ </think> to lay out your short reasoning.
2. If you need external information or an action, emit one or more <tool_call> β¦ </tool_call> blocks (JSON spec below).
3. When the environment returns <tool_response>, continue reasoning; you may call more tools.
4. Once you can answer the user, wrap the final result in <answer> β¦ </answer> and STOP calling tools.
β **Tool call format** (do **not** restate the schema or any explanations):
<tool_call>
{{"name": <function-name-1>, "arguments": <args-json-object>}}
</tool_call>
Here are available functions in JSONSchema format: \n```json\n{func_schemas}\n```
""" + date_str + anti_chinese_str + proper_formatting_str
system_prompt_forcing_tool_call = """
In this environment you have access to a set of tools you can use to assist with the user query.
You may perform multiple rounds of function calls upto ten. In each round, you can call upto three functions.
ββββββββββββββββββββββββ AVAILABLE TOOLS ββββββββββββββββββββββββ
```json
[
{
"type": "function",
"function": {
"name": "pubmed_search",
"description": "Search PubMed for Medical related queries.",
"parameters": {
"type": "object",
"properties": {
"query": { "type": "string", "description": "Query to search for." },
"top_n": { "type": "integer", "description": "Number of hits", "default": 3 }
},
"required": ["query"]
}
}
}
]
```
ββββββββββββββββββββββββββββββ RULES ββββββββββββββββββββββββββββββ
1. You MUST issue one pubmed_search tool call for each answer choice. Each query must relate the clinical context to that option.
2. You MAY NOT skip any option or decide based only on internal reasoning. Evidence must be retrieved for all choices.
3. You MAY issue follow-up tool calls if your reasoning leads you to need more evidence.
4. You MUST wrap all reasoning in <think> </think> tags and all tool usage in <tool_call> </tool_call> tags. Number of <tool_call> and </tool_call> tokens in the entire trace MUST always match.
5. Do NOT casually emit the <tool_call> </tool_call> during reasoning unless explicitly calling a tool in the proper format.
5. Your final answer must be enclosed a single letter corresponding to the correct option enclosed in the <answer> </answer> tags. Do not output anything else inside these tags.
6. DO NOT use any other confusing tags like <thiking> or </thinking>.
7. Each <think> </think> block MUST be followed by a <tool_call> </tool_call> or <answer> </answer> or else the program will break without an answer.
βββββββββββββββββββββ DUMMY EXAMPLE INTERLEAVED SKELETON βββββββββββββββββββββ
<think>
We are presented with a 54-year-old woman with invasive ductal carcinoma of the breast and osteolytic lesions in the thoracic spine. This strongly suggests metastatic spread. Our task is to determine the most likely anatomical route of metastasis to the spine.
Letβs examine the given options:
A. Hemiazygos vein
B. Posterior intercostal veins
C. Batsonβs vertebral venous plexus
D. Internal mammary lymphatics
We'll evaluate each option in turn using available literature and known anatomical pathways.
**Option A: Hemiazygos vein**
We begin by evaluating whether the hemiazygos vein could be involved in metastatic spread from breast cancer to the spine.
</think>
<tool_call>
{"name": "pubmed_search", "arguments": {"query": "breast cancer metastasis hemiazygos vein", "top_n": 2}}
</tool_call>
<tool_response>
...
</tool_response>
<think>
There is limited or no strong evidence suggesting the hemiazygos vein is a common or primary route for vertebral metastasis from breast cancer.
Lets explore **Option B: Posterior intercostal veins** and **Option C: Batsonβs vertebral venous plexus** and **Option D:Internal mammary lymphatics**
</think>
<tool_call>
{"name": "pubmed_search", "arguments": {"query": "posterior intercostal veins breast cancer spinal metastasis", "top_n": 3}}
</tool_call>
<tool_call>
{"name": "pubmed_search", "arguments": {"query": "Batson vertebral venous plexus breast cancer metastasis", "top_n": 3}}
</tool_call>
<tool_call>
{"name": "pubmed_search", "arguments": {"query": "Internal mammary lymphatics breast cancer metastasis", "top_n": 3}}
</tool_call>
<tool_response>
...
</tool_response>
<think>
While the posterior intercostal veins may be involved in venous drainage, there is insufficient evidence to support them as a primary route for metastasis to the vertebral column.
where as Batsonβs vertebral venous plexus β a valveless venous network that connects the thoracic and abdominal veins directly to the spine. I to find more specific information about option C.
</think>
<tool_call>
{"name": "pubmed_search", "arguments": {"query": ""Batson vertebral venous plexus breast cancer metastasis in people over 50", "top_n": 1}}
</tool_call>
<think>
After evaluating all four options, the most plausible route for breast cancer metastasis to the thoracic spine is clearly via Batsonβs vertebral venous plexus:
</think>
<answer>C</answer>
""" + date_str + anti_chinese_str + proper_formatting_str
# STOP_TOKENS =STOP_TOKENS = ["<|im_end|>", "<|endoftext|>"
def __init__(self, executor_url):
self.executor_url = executor_url
def init_prompt(self, func_schemas, question, old_prompt: Optional[str] = None, search_on: bool = True) -> str:
if old_prompt is None or len(old_prompt.strip()) == 0:
if search_on:
system_prompt = f"<|im_start|>system\n{self.sys_prompt_websailor.format(func_schemas=func_schemas)}<|im_end|>"
else:
system_prompt = f"<|im_start|>system\n{self.sys_prompt_non_search}<|im_end|>"
user_prompt = f"<|im_start|>user\n{question}<|im_end|>"
assistant_prefix = f"<|im_start|>assistant\n<think>"
return system_prompt + "\n" + user_prompt + "\n" + assistant_prefix
else:
user_prompt = f"<|im_start|>user\n{question}<|im_end|>"
assistant_prefix = f"<|im_start|>assistant\n<think>"
return old_prompt + "\n" + user_prompt + "\n" + assistant_prefix
def replace_sys_prompt(self, old_prompt: str, func_schemas: str, search_on: bool = True) -> str:
if search_on:
new_sys_prompt = f"<|im_start|>system\n{self.sys_prompt_websailor.format(func_schemas=func_schemas)}<|im_end|>"
old_sys_prompt = f"<|im_start|>system\n{self.sys_prompt_non_search}<|im_end|>"
else:
new_sys_prompt = f"<|im_start|>system\n{self.sys_prompt_non_search}<|im_end|>"
old_sys_prompt = f"<|im_start|>system\n{self.sys_prompt_websailor.format(func_schemas=func_schemas)}<|im_end|>"
return old_prompt.replace(old_sys_prompt, new_sys_prompt)
def _strip_old_tool_responses(self, prompt: str) -> str:
TOOL_RESPONSE_RE = re.compile(r"<tool_response>.*?</tool_response>\s*", re.DOTALL)
"""Remove every existing <tool_response> β¦ </tool_response> block."""
return TOOL_RESPONSE_RE.sub("", prompt)
def cat_assistant_response(self, curr_prompt, assistant_response):
return curr_prompt + assistant_response + "<|im_end|>"
def cat_tool_results(self, curr_prompt, tool_calls, results):
tool_response_str = ""
for tool_call, result in zip(tool_calls, results):
tool_response_str += f"<tool_response>{tool_call}\n{result}\n</tool_response>\n"
tool_response_str = f"<|im_start|>user\n{tool_response_str}<|im_end|>"
assistant_prefix = f"<|im_start|>assistant\n<think>"
return curr_prompt + "\n" + tool_response_str + "\n" + assistant_prefix
def format_tool_call(self, tool_call_str: str):
"""Convert JSON function call description to Python executable code string."""
try:
call_json = json.loads(tool_call_str)
func_name = call_json['name']
arguments = call_json.get('arguments', {})
args_str = ', '.join(f"{k}={repr(v)}" for k, v in arguments.items())
return f"{func_name}({args_str})"
except Exception as e:
return f"Parse tool call failed: {e}"
def execute_tool_calls(self, env: str, tool_calls: List[str]) -> List[str]:
def exe_tool_call(env, call):
url = self.executor_url + '/execute'
call_str = self.format_tool_call(call)
# print(call_str)
if call_str.startswith("error: parse tool call failed"):
return call_str
try:
data = {
'env': env,
'call': call_str
}
response = requests.post(url, json=data, timeout=60)
if response.status_code != 200:
return f"error: {response.status_code}"
response = response.json()
ret_str = ''
if response['result']:
ret_str += f'result: \n{response["result"]}\n'
if response['output']:
ret_str += f'output: \n{response["output"]}\n'
if response['error']:
ret_str += f'error: \n{response["error"]}\n'
return ret_str.strip()
except requests.exceptions.Timeout:
return "error: execution timed out"
except Exception as e:
return str(e)
results = []
for tool_call in tool_calls:
result = exe_tool_call(env, tool_call)
results.append(result)
return results
def validate_tool_calls(self, output_str):
start_tags = re.findall(r'<tool_call>', output_str)
end_tags = re.findall(r'</tool_call>', output_str)
if len(start_tags) != len(end_tags):
return False
start_positions = [m.start() for m in re.finditer(r'<tool_call>', output_str)]
end_positions = [m.start() for m in re.finditer(r'</tool_call>', output_str)]
for start, end in zip(start_positions, end_positions):
if start >= end:
return False
return True
def extract_tool_calls(self, output_str):
if not self.validate_tool_calls(output_str):
return []
try:
pattern = r'<tool_call>((?:(?!</tool_call>).)*)</tool_call>'
matches = re.finditer(pattern, output_str, re.DOTALL)
return [match.group(1).strip() for match in matches]
except Exception as e:
return []
def extract_tool_calls_deepseek(self, output_str):
if not self.validate_tool_calls(output_str):
return []
try:
pattern = r'<tool_calls_begin>((?:(?!</tool_calls_end>).)*)<tool_calls_end>'
matches = re.finditer(pattern, output_str, re.DOTALL)
return [match.group(1).strip() for match in matches]
except Exception as e:
return []
@retry(max=5, sleep=1, fallback={"score": 0})
def run_ii_searcher(
self,
env: str,
func_schemas: str,
question: str,
tokenizer,
model_url="http://0.0.0.0:1214",
temperature: float = 0.0,
max_new_tokens: int = 40960,
):
curr_prompt = self.init_prompt(func_schemas, question)
all_tool_calls= []
for _ in range(16):
prompt_tokens = tokenizer(curr_prompt, return_tensors=None, add_special_tokens=False)["input_ids"]
max_tokens_left = max_new_tokens - len(prompt_tokens) - 100
# for oss model served via vllm
# response = requests.post(
# f'{model_url}/v1/chat/completions',
# json={
# "text": curr_prompt,
# # "reasoning": "medium"
# },
# ).json()
# for sglang served models hf models
response = requests.post(
f'{model_url}/generate',
json={
"text": curr_prompt,
"sampling_params": {
"temperature": temperature,
"max_new_tokens": max_tokens_left,
"repetition_penalty": 1.05
},
}
).json()
if "error" in response.keys():
print("resp",response)
curr_prompt = self.cat_assistant_response(curr_prompt, response['text'])
tool_calls: List[str] = self.extract_tool_calls(response['text'])
all_tool_calls += tool_calls
if len(tool_calls) == 0:
break
else:
results: List[str] = self.execute_tool_calls(env, tool_calls)
curr_prompt = self.cat_tool_results(curr_prompt, tool_calls, results)
return curr_prompt, all_tool_calls
# @retry(max=5, sleep=1, fallback={"score": 0})
# def run(
# self,
# env: str,
# func_schemas: str,
# question: str,
# tokenizer,
# model_url="http://0.0.0.0:1214",
# temperature: float = 0.0,
# max_new_tokens: int = 40960,
# ):
# curr_prompt = self.init_prompt(func_schemas, question)
# all_tool_calls= []
# for i in range(32):
# prompt_tokens = tokenizer(curr_prompt, return_tensors=None, add_special_tokens=False)["input_ids"]
# max_tokens_left = max_new_tokens - len(prompt_tokens) - 100
# # for oss model served via vllm
# # response = requests.post(
# # f'{model_url}/v1/chat/completions',
# # json={
# # "text": curr_prompt,
# # # "reasoning": "medium"
# # },
# # ).json()
# # for sglang served models hf models
# response = requests.post(
# f'{model_url}/generate',
# json={
# "text": curr_prompt,
# "sampling_params": {
# "temperature": temperature,
# "max_new_tokens": max_tokens_left,
# "repetition_penalty": 1.05
# },
# }
# ).json()
# if "error" in response.keys():
# print("resp",response)
# curr_prompt = self.cat_assistant_response(curr_prompt, response['text'])
# tool_calls: List[str] = self.extract_tool_calls(response['text'])
# all_tool_calls += tool_calls
# if len(tool_calls) == 0:
# break
# else:
# # print(f"Step-{i+1}")
# results: List[str] = self.execute_tool_calls(env, tool_calls)
# curr_prompt = self.cat_tool_results(curr_prompt, tool_calls, results)
# return curr_prompt, all_tool_calls
from typing import List, Dict, Any, Tuple
import requests
def build_summary_prompt(self, question: str, transcript: str, tool_calls: Any) -> str:
"""Assemble a compact but detailed prompt for summarization."""
tool_str = ""
if tool_calls is not None:
try:
tool_str = str(tool_calls)
except Exception:
tool_str = "<unprintable tool_calls>"
return (
"You are given a DeepSearch investigation trace.\n\n"
f"Question:\n{question}\n\n"
"Trace (model transcript):\n"
f"{transcript}\n\n"
"Tool Calls (as-recorded):\n"
f"{tool_str}\n\n"
"β End of trace β"
)
def reformat_trace(self, s: str) -> str:
if not s:
return s
t = s
# 1) Speaker tags: <|im_start|>assistant -> "ASSISTANT:\n"
def _speaker(m: re.Match) -> str:
role = (m.group(1) or "").strip().upper()
return f"\n{role}:\n"
t = re.sub(r"<\|im_start\|\>(\w+)", _speaker, t, flags=re.IGNORECASE)
# 2) End-of-message tag: drop but keep spacing
t = re.sub(r"<\|im_end\|\>", "\n", t, flags=re.IGNORECASE)
# 3) THINK blocks: replace tags with label, keep content
t = re.sub(r"<think\s*>", "", t, flags=re.IGNORECASE)
t = re.sub(r"</think\s*>", "\n", t, flags=re.IGNORECASE)
# 4) TOOL RESPONSE blocks: support both 'response' and the misspelt 'resonse'
t = re.sub(r"<tool_respon[sc]e\s*>", "SEARCH RESULT\n", t, flags=re.IGNORECASE)
t = re.sub(r"</tool_respon[sc]e\s*>", "\n", t, flags=re.IGNORECASE)
# 5) TOOL CALL wrappers: drop tags, keep the JSON/content
t = re.sub(r"</?tool_call\s*>", "", t, flags=re.IGNORECASE)
# 6) Any remaining ChatML specials like <|eot_id|>, <|...|> -> remove
t = re.sub(r"<\|[^>]+?\|>", "", t)
# 7) Remove any other angle-bracket tags we didnβt explicitly keep
# (leaves inner text intact). This will strip e.g. <tool_response_extra>
t = re.sub(r"</?[^>\n]+?>", "", t)
# 8) Normalize whitespace (collapse 3+ newlines to 2)
t = re.sub(r"\n{3,}", "\n\n", t).strip()
return t
def _openai_client(self):
try:
from openai import OpenAI # type: ignore
except Exception as e:
raise RuntimeError("openai package not installed. `pip install openai`") from e
return OpenAI()
def init_summary_prompt(self, system_prompt: str, prompt: str) -> str:
system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>"
user_prompt = f"<|im_start|>user\n{prompt}<|im_end|>"
assistant_prefix = f"<|im_start|>assistant\n<think>"
return system_prompt + "\n" + user_prompt + "\n" + assistant_prefix
def _call_hf_endpoint(self, base_url: str, system_prompt: str, prompt: str, temperature: float, max_tokens: int, deepresearch_on: bool) -> str:
curr_prompt = self.init_summary_prompt(system_prompt, prompt)
hf_token= os.environ['HF_TOKEN']
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {hf_token}",
"Content-Type": "application/json"
}
# print(f"User Prompt:\n{curr_prompt}\n\n")
response_summary = requests.post(
url=f"{base_url}",
headers=headers,
json={
"inputs": curr_prompt,
"parameters": {
"temperature": temperature,
"max_new_tokens": max_tokens,
"top_p": 0.95,
"repetition_penalty": 1.05,
},
},
timeout=300,
).json()
if isinstance(response_summary, list):
response_summary = response_summary[0]
if isinstance(response_summary, dict) and "error" in response_summary:
# Log the error as assistant text for visibility and break
err_msg = f"[model_error] {response_summary.get('error')}"
print("Got error response from summarising model:", err_msg, end="\n\n")
assistant_text = response_summary.get("generated_text", "")
if curr_prompt == assistant_text[:len(curr_prompt)]:
assistant_text = assistant_text[len(curr_prompt):]
# print(assistant_text)
report = re.split(r"</think\s*>", assistant_text, flags=re.IGNORECASE)[-1]
# plan = re.split(r"</think\s*>", assistant_text, flags=re.IGNORECASE)[0]
# print(report, "\n\n")
if not deepresearch_on:
report = report.strip()
# report = report[::-1]
# str_find = "Final Answer:"
# pos = report.find(str_find[::-1])
# pos += len(str_find)
# report = report[pos:][::-1]
# report = report.rstrip('# \n-').strip(' \n-')
start_tag = "<answer>"
end_tag = "</answer>"
pos_start = report.find(start_tag)
pos_end = report[pos_start:].find(end_tag) + pos_start
answer = report
if pos_start != -1 and pos_end != -1:
answer = report[pos_start + len(start_tag):pos_end].strip()
str_find = "Final Answer:"
if str_find in answer:
answer = answer[::-1]
pos = answer.find(str_find[::-1])
pos += len(str_find)
answer = answer[pos:][::-1]
answer = answer.rstrip('# \n-').strip(' \n-')
# print("answer:")
# print(answer, "\n\n")
return answer
report = report.strip()
report = report[::-1]
str_find = "Sources used"
pos = report.find(str_find[::-1])
pos += len(str_find)
report = report[pos:][::-1]
report = report.rstrip('# \n-').strip(' \n-')
if not report.startswith("##") and report.startswith("#"):
report = "#" + report
elif not report.startswith("##") and not report.startswith("#"):
report = "## " + report
# report = '\n\n' + report.strip()
# print(report.find('Executive Summary'), report.find('#'))
# print(f"'{report[:20]}'")
# print(report,"\n\n")
urls = {}
count = 1
while "[http" in report:
start_idx = report.find("[http")
end_idx = report.find("]", start_idx)
if end_idx != -1:
url_string = report[start_idx + 1:end_idx]
url_list = []
while len(url_string) > 0:
pos1 = url_string.find(";")
pos2 = url_string.find(",")
pos3 = url_string.find(" ")
if pos1 == -1:
pos1 = len(url_string) + 1
if pos2 == -1:
pos2 = len(url_string) + 1
if pos3 == -1:
pos3 = len(url_string) + 1
pos = min(pos1, pos2, pos3)
if pos == len(url_string) + 1:
url = url_string
else:
url = url_string[:pos]
url_list.append(url)
if pos < len(url_string):
url_string = url_string[pos + 1:].lstrip(" ,;")
else:
break
report_new = report[:start_idx] + '(**'
for url in url_list:
if url not in urls:
urls[url] = count
count += 1
report_new += f'[{urls[url]}], '
report_new = report_new[:-2]
report_new += '**)' + report[end_idx+1:]
report = report_new
else:
break
if len(urls) > 0:
report += "\n\n## Sources used:\n"
sorted_urls = sorted(urls.items(), key=lambda x: x[1])
for url, idx in sorted_urls:
report += f"- **{idx}**: {url}\n"
report += '\n'
# adding references (auto-removed in markdown)
for url, idx in sorted_urls:
report += f"[{idx}]: {url}\n"
# print(report,"\n\n")
return report
def _route_and_summarize(
self,
summary_llm: str,
system_prompt: str,
prompt: str,
*,
temperature: float,
max_tokens: int,
deepresearch_on: bool,
) -> str:
"""
If `summary_llm` starts with 'http', treat as vLLM base_url; else treat as an OpenAI model id.
For vLLM, prepend [SYSTEM]/[USER] tags; for OpenAI, pass messages with system+user.
"""
if not summary_llm.strip().lower().startswith("gpt-"):
# print(system_prompt)
# print(prompt)
return self._call_hf_endpoint(summary_llm, system_prompt, prompt, temperature=temperature, max_tokens=max_tokens, deepresearch_on=deepresearch_on)
else:
client = self._openai_client()
rsp = client.chat.completions.create(
model=summary_llm,
temperature=temperature,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
max_tokens=max_tokens,
)
return rsp.choices[0].message.content or ""
@retry(max=5, sleep=1, fallback={"score": 0})
def run(
self,
env: str,
func_schemas: str,
question: str,
tokenizer,
model_url: str = "http://0.0.0.0:1214",
temperature: float = 0.0,
max_new_tokens: int = 40960,
top_p: float = 0.6,
old_prompt: Optional[str] = None,
deepresearch_on: bool = True,
summary_llm: str = "gpt-4.1-mini"
):
# ) -> Tuple[str, List[str], List[Dict[str, str]]]:
"""
Returns:
curr_prompt: the final prompt buffer (with assistant/tool traces you maintain internally)
all_tool_calls: flat list of all tool call strings extracted across steps
chat: a lightweight chat transcript list[{"role": "...", "content": "..."}]
β’ 'user' items = the original question + aggregated tool responses
β’ 'assistant' items = model responses (and a compact line-list of tool calls)
"""
# off_str = "\n\n**User has TURNED OFF search**. **DO NOT use search**. **Answer all questions YOURSELF**. **DO NOT use any tools**.\n**YOUR FIRST-RESPONSE WILL BE CONSIDERED AS THE FINAL ANSWER**. **YOU WILL NOT GET TO CALL TOOLS AND WAIT FOR TOOL RESULTS AND THEN ANSWER**.\n**YOU WON'T BE ALLOWED TO CHAT AND CALL TOOLS, IN A MULTI-TURN FASHION**. **YOU WILL CHAT IN A SINGLE-TURN FORMAT**.\n**SO MAKE SURE YOUR FIRST RESPONSE IS THE FINAL ANSWER**.\n"
# if not search_on and (old_prompt is not None and self.sys_prompt_websailor_start not in old_prompt):
# question += off_str
search_on = True
if old_prompt is not None:
old_prompt = self.replace_sys_prompt(old_prompt, func_schemas, search_on)
# Build runtime prompt and initialize accumulators
curr_prompt = self.init_prompt(func_schemas, question, old_prompt, search_on)
all_tool_calls: List[str] = []
chat: List[Dict[str, str]] = []
# Seed transcript with JUST the question (no system prompt)
chat.append({"role": "user", "content": question})
for i in range(64):
# Budget tokens for this step
prompt_tokens = tokenizer(curr_prompt, return_tensors=None, add_special_tokens=False)["input_ids"]
max_tokens_left = max(1, max_new_tokens - len(prompt_tokens) - 100)
# ---- Model call (sglang/vLLM-style JSON) ----
# If you switch to /v1/chat/completions, adjust accordingly.
hf_token= os.environ['HF_TOKEN']
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {hf_token}",
"Content-Type": "application/json"
}
# print(f"User Prompt:\n{curr_prompt}\n\n")
response = requests.post(
url=f"{model_url}",
headers=headers,
json={
"inputs": curr_prompt,
"parameters": {
"temperature": temperature,
"max_new_tokens": max_tokens_left,
"top_p": top_p,
"repetition_penalty": 1.05,
},
},
timeout=300,
).json()
if isinstance(response, list):
response = response[0]
if isinstance(response, dict) and "error" in response:
# Log the error as assistant text for visibility and break
err_msg = f"[model_error] {response.get('error')}"
print("Got error response from model:", err_msg, end="\n\n")
chat.append({"role": "assistant", "content": err_msg})
break
assistant_text = response.get("generated_text", "")
if curr_prompt == assistant_text[:len(curr_prompt)]:
# print("Current prompt is a prefix to generated text.")
# If the assistant's response is just a continuation of the prompt, we can use it directly
assistant_text = assistant_text[len(curr_prompt):]
# print(f"Assistant Text:\n{assistant_text}\n\n")
# Append assistant's raw text to chat
chat.append({"role": "assistant", "content": assistant_text})
# Update your running prompt with assistant text
curr_prompt = self.cat_assistant_response(curr_prompt, assistant_text)
# Extract tool calls from the assistant text
if search_on:
tool_calls: List[str] = self.extract_tool_calls(assistant_text)
else:
tool_calls: List[str] = []
# yield "assistant_resp", (assistant_text, tool_calls)
if tool_calls:
yield "assistant_resp", (assistant_text, tool_calls)
all_tool_calls.extend(tool_calls)
# Log tool calls as an assistant message (newline-joined)
chat.append({"role": "assistant", "content": "\n".join(tool_calls)})
# Execute tools and collect results
results: List[str] = self.execute_tool_calls(env, tool_calls)
yield "tool_results", (results, )
# Feed tool results back into prompt
curr_prompt = self.cat_tool_results(curr_prompt, tool_calls, results)
# Aggregate tool responses into a single user message
tool_res_blocks = []
for idx, (call, res) in enumerate(zip(tool_calls, results), 1):
tool_res_blocks.append(f"[Tool {idx}] Result:\n{res}")
chat.append({"role": "user", "content": "\n\n".join(tool_res_blocks)})
else:
if search_on:
prompt = self.build_summary_prompt(question, self.reformat_trace(curr_prompt) or "", all_tool_calls)
system_prompt = DEEPRESEARCH_SYS_PROMPT if deepresearch_on else SUMMARY_SYS_PROMPT
summary_text = self._route_and_summarize(
summary_llm=summary_llm if deepresearch_on else model_url,
system_prompt=system_prompt,
prompt=prompt,
temperature=0.6,
max_tokens=16000,
deepresearch_on=deepresearch_on
)
summary_text_splits = summary_text.split("</think>")
summary_text_initial = summary_text_splits[0]
summary_text_initial = summary_text_initial.replace("<think>", "").strip()
summary_text_final = summary_text_splits[-1]
if len(summary_text_initial) > 0 and "</think>" in summary_text:
yield "assistant_resp", (summary_text_initial, [])
yield "tool_results", ([], )
yield "assistant_resp", (summary_text_final, tool_calls)
# print(f"No tool calls found in assistant response.\nAssistant Response:\n{assistant_text}\n\n")
else:
yield "assistant_resp", (assistant_text, tool_calls)
print(f"Search is off, so no tool calls expected and no tool calls called.\nAssistant Response:\n{assistant_text}\n\n")
# No tool calls β model produced a final answer; stop.
break
# Return the original outputs plus the chat-style transcript
# return curr_prompt, all_tool_calls, chat
return "end", (curr_prompt, )
@retry(max=5, sleep=1, fallback={"score": 0})
def run_deepseek(
self,
env: str,
func_schemas: str,
question: str,
model_name: str,
temperature: float = 0.0,
top_p: float = 0.95,
max_tokens: int = 32768,
):
# print("AA"* 100)
"""
Chat-based ReCall loop for DeepSeek-R1 on Together.
"""
sys_content = self.sys_prompt_websailor_deepseek.format(func_schemas=func_schemas)
# sys_content = self.init_prompt(func_schemas, question)
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": question},
]
# client = Together(api_key="")
client = Together(api_key="")
all_tool_calls = []
for turn in range(32): # up to 10 reasoning turns
resp = client.chat.completions.create(
model=model_name,
# model="Qwen/Qwen3-235B-A22B-fp8-tput",
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=39000,
stop=["<ο½endβofβsentenceο½>", "<|im_end|>"]
)
# print(resp)
assistant_text = resp.choices[0].message.content
# print(assistant_text)
messages.append({"role": "assistant", "content": assistant_text})
# print(f"assistant_output: {assistant_text}")
# β Safe tool call extraction with diagnostic
# try:
# print("Extracting tool calls")
tool_calls = self.extract_tool_calls_deepseek(assistant_text)
print(tool_calls)
all_tool_calls += tool_calls
# except Exception as e:
# print(f"Extraction failed with exception {e}")
# err_msg = f"<tool_response>Tool call extraction failed on turn {turn+1}: {str(e)}</tool_response>"
# messages.append({"role": "user", "content": err_msg})
# continue # continue to next turn instead of breaking
if "<answer>" in assistant_text:
break
if len(tool_calls) != 0:
results = self.execute_tool_calls(env, tool_calls)
tool_resp_block = "".join(
f"<tool_response>{c}\n{r}\n</tool_response>\n"
for c, r in zip(tool_calls, results)
)
messages.append({"role": "user", "content": tool_resp_block})
# print(f"Tool Response {tool_resp_block}")
else:
print("no answer or tool call")
break
trajectory = "\n".join(
f"<{m['role']}>\n{m['content']}" for m in messages
if m["role"] != "system"
)
return trajectory, all_tool_calls
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# HF-endpoint version of βretrieve β inject β tool loopβ
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@retry(max=5, sleep=1, fallback=None)
def run_with_prompt_injection(
self,
env: str,
func_schemas: str,
question: str,
model_url: str = "http://0.0.0.0:1214",
temperature: float = 0.0,
max_new_tokens: int = 512,
top_n: int = 5,
):
"""
0) call pubmed_search(question, top_n) once via the sandbox
1) inject those snippets into the very first user message
2) continue with the normal multi-turn ReCall loop against *model_url*
"""
# 0οΈβ£ do a single retrieval tool call
retrieve_call = json.dumps({
"name": "pubmed_search",
"arguments": {"query": question, "top_n": top_n}
})
retrieval_raw = self.execute_tool_calls(env, [retrieve_call])[0]
try:
snippets_block = retrieval_raw.split("result:", 1)[-1].strip()
except Exception:
snippets_block = ""
# 1οΈβ£ build initial prompt with injected snippets
user_msg = (
f"Question: {question}\n\n"
"Here are some relevant PubMed snippets:\n"
f"{snippets_block}"
) if snippets_block else f"Question: {question}"
sys_prompt = self.init_prompt(func_schemas, question)
system_prompt = f"<|im_start|>system\n{sys_prompt}<|im_end|>"
user_prompt = f"<|im_start|>user\n{user_msg}<|im_end|>"
assistant_pref= f"<|im_start|>assistant\n<think>"
curr_prompt = system_prompt + "\n" + user_prompt + "\n" + assistant_pref
# 2οΈβ£ normal ReCall loop hitting the HF inference endpoint
for _ in range(10):
resp = requests.post(
f"{model_url}/generate",
json={
"text": curr_prompt,
"sampling_params": {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
}
},
timeout=120,
).json()
if "error" in resp.keys():
print("resp", resp)
assistant_txt = resp["text"]
curr_prompt = self.cat_assistant_response(curr_prompt, assistant_txt)
tool_calls = self.extract_tool_calls(assistant_txt)
if len(tool_calls) != 0:
# break # model produced an answer β done
results = self.execute_tool_calls(env, tool_calls)
curr_prompt = self.cat_tool_results(curr_prompt, tool_calls, results)
else:
continue
return curr_prompt
@retry(max=5, sleep=1, fallback={"score": 0})
def run_budget(
self,
env: str,
func_schemas: str,
question: str,
model_url: str = "http://0.0.0.0:1214",
temperature: float = 0.0,
max_new_tokens: int = 2048,
) -> str:
"""
Execute an agentic dialogue with external tools while *pruning* previous
<tool_response> blocks to prevent context-length explosion.
"""
curr_prompt = self.init_prompt(func_schemas, question)
for _ in range(16): # hard loop-limit
# ββ 1. Call the model
rsp = requests.post(
f"{model_url}/generate",
json={
"text": curr_prompt,
"sampling_params": {
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"stop": ["<|im_end|>", "</think>", "</think>\n" "</think>\n\n"],
},
},
timeout=120,
).json()
generated = rsp["text"] # what you have now
matched = rsp["meta_info"]["finish_reason"].get("matched")
# β’Β append the tag back only if it was removed
if matched and not generated.endswith(matched):
generated += matched
# Fail fast on server error
if "error" in rsp:
raise RuntimeError(rsp["error"])
assistant_text: str = rsp["text"]
curr_prompt = self.cat_assistant_response(curr_prompt, assistant_text)
# ββ 2. Check for final answer ββββββββββββββββββββββββββββββββββββ
if "<answer>" in assistant_text:
break
# ββ 3. Extract & execute tool calls ββββββββββββββββββββββββββββββ
tool_calls: List[str] = self.extract_tool_calls(assistant_text)
if not tool_calls: # continue reasoning without calling a tool
continue
results: List[str] = self.execute_tool_calls(env, tool_calls)
# ββ 4. BEFORE appending new tool output, drop all old ones βββββββ
curr_prompt =self. _strip_old_tool_responses(curr_prompt)
# ββ 5. Append *only* the fresh tool_response block βββββββββββββββ
curr_prompt = self.cat_tool_results(curr_prompt, tool_calls, results)
return curr_prompt
def _strip_old_tool_responses_msgs(self, messages: list[dict]) -> list[dict]:
"""
Return a copy of `messages` with every *user* message that starts with
<tool_response> removed. Keeps assistant turns untouched.
"""
return [
m for m in messages
if not (m["role"] == "user" and m["content"].lstrip().startswith("<tool_response>"))
]
# ββββββββββ budget version ββββββββββ
@retry(max=5, sleep=1, fallback={"score": 0})
def run_deepseek_budget(
self,
env: str,
func_schemas: str,
question: str,
api_key: str,
model_name: str,
temperature: float = 0.0,
top_p: float = 0.95,
max_tokens: int = 32768,
max_turns: int = 10,
):
"""
Chat-based ReCall loop for DeepSeek-R1 **with context-budget pruning**.
Keeps only the *latest* <tool_response> block to avoid prompt bloat.
"""
sys_content = self.system_prompt_budget.format(func_schemas=func_schemas)
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": question},
]
client = Together(api_key=api_key)
for turn in range(max_turns):
# ββ 1. model call βββββββββββββββββββββββββββββββββββββββββββββββ
resp = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
stop=["</tool_call>", "<ο½endβofβsentenceο½>"],
)
assistant_text = resp.choices[0].message.content
messages.append({"role": "assistant", "content": assistant_text})
print(f"**assistant** \n {assistant_text}")
# ββ 2. finished? ββββββββββββββββββββββββββββββββββββββββββββββββ
if "<answer>" in assistant_text:
break
# ββ 3. parse tool calls ββββββββββββββββββββββββββββββββββββββββ
tool_calls = self.extract_tool_calls(assistant_text)
print(f"**tool_calls** \n {tool_calls}")
if not tool_calls:
continue # keep reasoning without tools
# ββ 4. execute tools βββββββββββββββββββββββββββββββββββββββββββ
results = self.execute_tool_calls(env, tool_calls)
print(f"**tool_response** \n {results}")
# ββ 5. prune & append fresh tool_response ββββββββββββββββββββββ
messages = self._strip_old_tool_responses_msgs(messages)
tool_resp_block = "".join(
f"<tool_response>{c}\n{r}\n</tool_response>\n"
for c, r in zip(tool_calls, results)
)
messages.append({"role": "user", "content": tool_resp_block})
# ββ 6. flatten & return trajectory (sans system for readability) βββ
trajectory = "\n".join(
f"<{m['role']}>\n{m['content']}" for m in messages if m["role"] != "system"
)
return trajectory
@retry(max=5, sleep=1, fallback=None)
def run_deepseek_with_prompt_injection(
self,
env: str,
func_schemas: str,
question: str,
api_key: str,
model_name: str,
temperature: float = 0.0,
top_p: float = 0.95,
max_tokens: int = 32768,
):
"""
1) Call pubmed_search(question, top_n=5) as a tool to get snippets.
2) Inject them into the first user message.
3) Proceed with the usual DeepSeek-R1 toolβbased rollout.
"""
# ββ Step 0: prepare the singleβtool call for retrieval βββββββββββββββ
retrieve_call = json.dumps({
"name": "pubmed_search",
"arguments": {
"query": question,
"top_n": 5
}
})
# Execute it once via your helper
# note: `env` must include whatever import / clientβsetup
# your sandbox needs to run pubmed_search(...)
raw_retrieval_results = self.execute_tool_calls(env, [retrieve_call])[0]
# print("AAAAA"*100)
try:
snippets = raw_retrieval_results[9:] #"remove result: str"
# print(snippets)
except:
snippets = ""
# print(f"[ReCall] Retriever call failed to parse JSON, got:\n{raw_retrieval_results!r}")
# ββ Step 1: build the injected user prompt ββββββββββββββββββββββββββββ
if snippets:
user_content = (
f"Question: {question}\n\n"
"Here are some relevant PubMed snippets:\n"
f"{snippets}"
)
else:
user_content = f"Question: {question}"
# ββ Step 2: start the chat history ββββββββββββββββββββββββββββββββββββ
sys_content = self.system_prompt_forcing_tool_call
messages = [
{"role": "system", "content": sys_content},
{"role": "user", "content": user_content},
]
client = Together(api_key=api_key)
# ββ Step 3: your normal ReCall toolβcalling loop βββββββββββββββββββββ
for turn in range(10):
resp = client.chat.completions.create(
model = model_name,
messages = messages,
temperature = temperature,
top_p = top_p,
max_tokens = max_tokens,
stop = ["</tool_call>", "<ο½endβofβsentenceο½>"]
)
assistant_text = resp.choices[0].message.content
messages.append({"role": "assistant", "content": assistant_text})
tool_calls = self.extract_tool_calls(assistant_text)
if not tool_calls:
break
# Execute all of the tool calls in one go
results = self.execute_tool_calls(env, tool_calls)
# and append them back in the required <tool_response> format
tool_resp_block = "".join(
f"<tool_response>{call}\n{out}\n</tool_response>\n"
for call, out in zip(tool_calls, results)
)
messages.append({"role": "user", "content": tool_resp_block})
# ββ Step 4: flatten to a single trajectory ββββββββββββββββββββββββββββ
trajectory = "\n".join(
f"<{m['role']}>\n{m['content']}"
for m in messages
if m["role"] != "system"
)
return trajectory
|