Rafs-an09002's picture
Update app.py
d66add0 verified
"""
Nexus-Core Inference API
13.2M parameter chess engine
"""
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
import time
import logging
from typing import Optional, List
from engine import NexusCoreEngine
# Logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# FastAPI
app = FastAPI(
title="Nexus-Core Inference API",
description="13.2M parameter Resnet-10 chess engine",
version="2.0.0"
)
# CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global engine
engine = None
# Models
class MoveRequest(BaseModel):
fen: str = Field(..., description="FEN notation")
depth: Optional[int] = Field(5, ge=1, le=8, description="Search depth")
time_limit: Optional[int] = Field(3000, ge=1000, le=15000, description="Time in ms")
class MoveResponse(BaseModel):
best_move: str
evaluation: float
depth_searched: int
seldepth: int
nodes_evaluated: int
time_taken: int
nps: int
pv: List[str]
tt_hit_rate: Optional[float] = None
class HealthResponse(BaseModel):
status: str
model_loaded: bool
version: str
model_size_mb: Optional[float] = None
# Startup
@app.on_event("startup")
async def startup_event():
global engine
logger.info("🚀 Starting Nexus-Core API v2.0...")
try:
engine = NexusCoreEngine(
model_path="/app/models/nexus-core.onnx",
num_threads=2
)
logger.info("✅ Engine loaded")
except Exception as e:
logger.error(f"❌ Failed: {e}")
raise
# Health
@app.get("/health", response_model=HealthResponse)
async def health_check():
return {
"status": "healthy" if engine else "unhealthy",
"model_loaded": engine is not None,
"version": "2.0.0",
"model_size_mb": engine.get_model_size() if engine else None
}
# Main endpoint
@app.post("/get-move", response_model=MoveResponse)
async def get_move(request: MoveRequest):
if engine is None:
raise HTTPException(status_code=503, detail="Engine not loaded")
if not engine.validate_fen(request.fen):
raise HTTPException(status_code=400, detail="Invalid FEN")
start_time = time.time()
try:
result = engine.get_best_move(
fen=request.fen,
depth=request.depth,
time_limit=request.time_limit
)
time_taken = int((time.time() - start_time) * 1000)
logger.info(
f"Move: {result['best_move']} | "
f"Eval: {result['evaluation']:+.2f} | "
f"Depth: {result['depth_searched']}/{result['seldepth']} | "
f"Nodes: {result['nodes_evaluated']} | "
f"NPS: {result['nps']}"
)
return MoveResponse(
best_move=result['best_move'],
evaluation=result['evaluation'],
depth_searched=result['depth_searched'],
seldepth=result['seldepth'],
nodes_evaluated=result['nodes_evaluated'],
time_taken=time_taken,
nps=result['nps'],
pv=result['pv'],
tt_hit_rate=result['tt_stats']['hit_rate']
)
except Exception as e:
logger.error(f"Error: {e}")
raise HTTPException(status_code=500, detail=str(e))
# Root
@app.get("/")
async def root():
return {
"name": "Nexus-Core Inference API",
"version": "2.0.0",
"model": "13.2M parameters (Resnet-10)",
"search": "PVS + NMP + LMR",
"endpoints": {
"POST /get-move": "Get best move",
"GET /health": "Health check",
"GET /docs": "Documentation"
}
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")