File size: 14,835 Bytes
8a2f169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
"""
Synapse-Base Main Search Engine
State-of-the-art alpha-beta with advanced enhancements
Research Implementation:
- Alpha-Beta with PVS (Principal Variation Search)
- Aspiration Windows
- Null Move Pruning
- Late Move Reductions (LMR)
- Quiescence Search with SEE
- Iterative Deepening
- Transposition Table with Zobrist
- Advanced Move Ordering
"""
import chess
import time
import logging
from typing import Optional, Tuple, List, Dict
from .evaluate import NeuralEvaluator
from .transposition import TranspositionTable, NodeType
from .move_ordering import MoveOrderer
from .time_manager import TimeManager
from .endgame import EndgameDetector
logger = logging.getLogger(__name__)
class SynapseEngine:
"""
State-of-the-art chess engine with neural evaluation
"""
# Search constants (tuned values from research)
MATE_SCORE = 100000
MAX_PLY = 100
# Null move pruning parameters
NULL_MOVE_REDUCTION = 2
NULL_MOVE_MIN_DEPTH = 3
# Late move reduction parameters
LMR_MIN_DEPTH = 3
LMR_MOVE_THRESHOLD = 4
# Aspiration window size
ASPIRATION_WINDOW = 50
def __init__(self, model_path: str, num_threads: int = 2):
"""Initialize engine components"""
# Core components
self.evaluator = NeuralEvaluator(model_path, num_threads)
self.tt = TranspositionTable(size_mb=256) # 256MB TT
self.move_orderer = MoveOrderer()
self.time_manager = TimeManager()
self.endgame_detector = EndgameDetector()
# Search statistics
self.nodes_evaluated = 0
self.depth_reached = 0
self.sel_depth = 0 # Selective depth (quiescence)
self.principal_variation = []
logger.info("🎯 Synapse-Base Engine initialized")
logger.info(f" Model: {self.evaluator.get_model_size_mb():.2f} MB")
logger.info(f" TT Size: 256 MB")
def get_best_move(
self,
fen: str,
depth: int = 5,
time_limit: int = 5000
) -> Dict:
"""
Main search entry point
Args:
fen: Position in FEN notation
depth: Maximum search depth
time_limit: Time limit in milliseconds
Returns:
Dictionary with best_move, evaluation, stats
"""
board = chess.Board(fen)
# Reset statistics
self.nodes_evaluated = 0
self.depth_reached = 0
self.sel_depth = 0
self.principal_variation = []
# Time management
time_limit_sec = time_limit / 1000.0
self.time_manager.start_search(time_limit_sec, time_limit_sec)
# Age history for new search
self.move_orderer.age_history(0.95)
self.tt.increment_age()
# Special cases
legal_moves = list(board.legal_moves)
if len(legal_moves) == 0:
return self._no_legal_moves_result()
if len(legal_moves) == 1:
return self._single_move_result(board, legal_moves[0])
# Iterative deepening with aspiration windows
best_move = legal_moves[0]
best_score = float('-inf')
alpha = float('-inf')
beta = float('inf')
for current_depth in range(1, depth + 1):
# Time check
if self.time_manager.should_stop(current_depth):
break
# Aspiration window for depth >= 4
if current_depth >= 4 and abs(best_score) < self.MATE_SCORE - 1000:
alpha = best_score - self.ASPIRATION_WINDOW
beta = best_score + self.ASPIRATION_WINDOW
else:
alpha = float('-inf')
beta = float('inf')
# Search with aspiration window
score, move, pv = self._search_root(
board, current_depth, alpha, beta
)
# Handle aspiration window failures
if score <= alpha or score >= beta:
# Research with full window
score, move, pv = self._search_root(
board, current_depth, float('-inf'), float('inf')
)
# Update best move
if move:
best_move = move
best_score = score
self.depth_reached = current_depth
self.principal_variation = pv
logger.info(
f"Depth {current_depth}: {move.uci()} "
f"({score:+.2f}) | Nodes: {self.nodes_evaluated} | "
f"Time: {self.time_manager.elapsed():.2f}s"
)
# Return result
return {
'best_move': best_move.uci(),
'evaluation': round(best_score / 100.0, 2), # Convert to pawns
'depth_searched': self.depth_reached,
'seldepth': self.sel_depth,
'nodes_evaluated': self.nodes_evaluated,
'time_taken': int(self.time_manager.elapsed() * 1000),
'pv': [m.uci() for m in self.principal_variation],
'nps': int(self.nodes_evaluated / max(self.time_manager.elapsed(), 0.001)),
'tt_stats': self.tt.get_stats(),
'move_ordering_stats': self.move_orderer.get_stats()
}
def _search_root(
self,
board: chess.Board,
depth: int,
alpha: float,
beta: float
) -> Tuple[float, Optional[chess.Move], List[chess.Move]]:
"""Root node search with PVS"""
legal_moves = list(board.legal_moves)
# TT probe
zobrist_key = self.tt.compute_zobrist_key(board)
tt_result = self.tt.probe(zobrist_key, depth, alpha, beta)
tt_move = tt_result[1] if tt_result else None
# Order moves
ordered_moves = self.move_orderer.order_moves(
board, legal_moves, depth, tt_move
)
best_move = ordered_moves[0]
best_score = float('-inf')
best_pv = []
for i, move in enumerate(ordered_moves):
board.push(move)
if i == 0:
# Full window search for first move (PV node)
score, pv = self._pvs(
board, depth - 1, -beta, -alpha, True
)
score = -score
else:
# Null window search for remaining moves
score, _ = self._pvs(
board, depth - 1, -alpha - 1, -alpha, False
)
score = -score
# Re-search if failed high
if alpha < score < beta:
score, pv = self._pvs(
board, depth - 1, -beta, -alpha, True
)
score = -score
else:
pv = []
board.pop()
# Update best
if score > best_score:
best_score = score
best_move = move
best_pv = [move] + pv
# Update alpha
if score > alpha:
alpha = score
# Time check
if self.time_manager.should_stop(depth):
break
# Store in TT
self.tt.store(
zobrist_key, depth, best_score,
NodeType.EXACT, best_move
)
return best_score, best_move, best_pv
def _pvs(
self,
board: chess.Board,
depth: int,
alpha: float,
beta: float,
do_null: bool
) -> Tuple[float, List[chess.Move]]:
"""
Principal Variation Search (PVS) with alpha-beta
Enhanced with:
- Null move pruning
- Late move reductions
- Transposition table
"""
self.sel_depth = max(self.sel_depth, self.MAX_PLY - depth)
# Mate distance pruning
alpha = max(alpha, -self.MATE_SCORE + (self.MAX_PLY - depth))
beta = min(beta, self.MATE_SCORE - (self.MAX_PLY - depth) - 1)
if alpha >= beta:
return alpha, []
# Draw detection
if board.is_repetition(2) or board.is_fifty_moves():
return 0, []
# TT probe
zobrist_key = self.tt.compute_zobrist_key(board)
tt_result = self.tt.probe(zobrist_key, depth, alpha, beta)
if tt_result and tt_result[0] is not None:
return tt_result[0], []
tt_move = tt_result[1] if tt_result else None
# Quiescence search at leaf nodes
if depth <= 0:
return self._quiescence(board, alpha, beta, 0), []
# Null move pruning
if (do_null and
depth >= self.NULL_MOVE_MIN_DEPTH and
not board.is_check() and
self._has_non_pawn_material(board)):
board.push(chess.Move.null())
score, _ = self._pvs(
board, depth - 1 - self.NULL_MOVE_REDUCTION,
-beta, -beta + 1, False
)
score = -score
board.pop()
if score >= beta:
return beta, []
# Generate and order moves
legal_moves = list(board.legal_moves)
if not legal_moves:
if board.is_check():
return -self.MATE_SCORE + (self.MAX_PLY - depth), []
return 0, [] # Stalemate
ordered_moves = self.move_orderer.order_moves(
board, legal_moves, depth, tt_move
)
# Main search loop
best_score = float('-inf')
best_pv = []
node_type = NodeType.UPPER_BOUND
moves_searched = 0
for move in ordered_moves:
board.push(move)
# Late move reductions
reduction = 0
if (moves_searched >= self.LMR_MOVE_THRESHOLD and
depth >= self.LMR_MIN_DEPTH and
not board.is_check() and
not board.is_capture(board.peek())):
reduction = 1
# PVS
if moves_searched == 0:
score, pv = self._pvs(
board, depth - 1, -beta, -alpha, True
)
score = -score
else:
# Reduced search
score, _ = self._pvs(
board, depth - 1 - reduction, -alpha - 1, -alpha, True
)
score = -score
# Re-search if necessary
if alpha < score < beta:
score, pv = self._pvs(
board, depth - 1, -beta, -alpha, True
)
score = -score
else:
pv = []
board.pop()
moves_searched += 1
# Update best
if score > best_score:
best_score = score
best_pv = [move] + pv
if score > alpha:
alpha = score
node_type = NodeType.EXACT
# Update history for good moves
if not board.is_capture(move):
self.move_orderer.update_history(move, depth, True)
self.move_orderer.update_killer_move(move, depth)
if score >= beta:
node_type = NodeType.LOWER_BOUND
break
# Store in TT
self.tt.store(zobrist_key, depth, best_score, node_type, best_pv[0] if best_pv else None)
return best_score, best_pv
def _quiescence(
self,
board: chess.Board,
alpha: float,
beta: float,
qs_depth: int
) -> float:
"""
Quiescence search to resolve tactical sequences
Only searches captures and checks
"""
self.nodes_evaluated += 1
# Stand-pat evaluation
stand_pat = self.evaluator.evaluate_hybrid(board)
stand_pat = self.endgame_detector.adjust_evaluation(board, stand_pat)
if stand_pat >= beta:
return beta
if alpha < stand_pat:
alpha = stand_pat
# Depth limit for quiescence
if qs_depth >= 8:
return stand_pat
# Generate tactical moves
tactical_moves = [
move for move in board.legal_moves
if board.is_capture(move) or board.gives_check(move)
]
if not tactical_moves:
return stand_pat
# Order tactical moves
tactical_moves = self.move_orderer.order_moves(
board, tactical_moves, 0
)
for move in tactical_moves:
board.push(move)
score = -self._quiescence(board, -beta, -alpha, qs_depth + 1)
board.pop()
if score >= beta:
return beta
if score > alpha:
alpha = score
return alpha
def _has_non_pawn_material(self, board: chess.Board) -> bool:
"""Check if side to move has non-pawn material"""
for piece_type in [chess.KNIGHT, chess.BISHOP, chess.ROOK, chess.QUEEN]:
if board.pieces(piece_type, board.turn):
return True
return False
def _no_legal_moves_result(self) -> Dict:
"""Result when no legal moves"""
return {
'best_move': '0000',
'evaluation': 0.0,
'depth_searched': 0,
'nodes_evaluated': 0,
'time_taken': 0
}
def _single_move_result(self, board: chess.Board, move: chess.Move) -> Dict:
"""Result when only one legal move"""
eval_score = self.evaluator.evaluate_hybrid(board)
return {
'best_move': move.uci(),
'evaluation': round(eval_score / 100.0, 2),
'depth_searched': 0,
'nodes_evaluated': 1,
'time_taken': 0,
'pv': [move.uci()]
}
def validate_fen(self, fen: str) -> bool:
"""Validate FEN string"""
try:
chess.Board(fen)
return True
except:
return False
def get_model_size(self) -> float:
"""Get model size in MB"""
return self.evaluator.get_model_size_mb() |