|
|
""" |
|
|
ONNX Model Loader for Synapse-Base |
|
|
Handles model loading and inference |
|
|
CPU-optimized for HF Spaces |
|
|
""" |
|
|
|
|
|
import onnxruntime as ort |
|
|
import numpy as np |
|
|
import chess |
|
|
import logging |
|
|
from pathlib import Path |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
class SynapseModel: |
|
|
"""ONNX Runtime wrapper for Synapse-Base model""" |
|
|
|
|
|
def __init__(self, model_path: str, num_threads: int = 2): |
|
|
""" |
|
|
Initialize model |
|
|
|
|
|
Args: |
|
|
model_path: Path to ONNX model file |
|
|
num_threads: Number of CPU threads to use |
|
|
""" |
|
|
self.model_path = Path(model_path) |
|
|
|
|
|
if not self.model_path.exists(): |
|
|
raise FileNotFoundError(f"Model not found: {model_path}") |
|
|
|
|
|
|
|
|
sess_options = ort.SessionOptions() |
|
|
sess_options.intra_op_num_threads = num_threads |
|
|
sess_options.inter_op_num_threads = num_threads |
|
|
sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL |
|
|
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL |
|
|
|
|
|
|
|
|
logger.info(f"Loading model from {model_path}...") |
|
|
self.session = ort.InferenceSession( |
|
|
str(self.model_path), |
|
|
sess_options=sess_options, |
|
|
providers=['CPUExecutionProvider'] |
|
|
) |
|
|
|
|
|
|
|
|
self.input_name = self.session.get_inputs()[0].name |
|
|
self.output_names = [output.name for output in self.session.get_outputs()] |
|
|
|
|
|
logger.info(f"✅ Model loaded: {self.input_name} -> {self.output_names}") |
|
|
|
|
|
def fen_to_tensor(self, fen: str) -> np.ndarray: |
|
|
""" |
|
|
Convert FEN to 119-channel tensor |
|
|
|
|
|
Args: |
|
|
fen: FEN string |
|
|
|
|
|
Returns: |
|
|
numpy array of shape (1, 119, 8, 8) |
|
|
""" |
|
|
board = chess.Board(fen) |
|
|
tensor = np.zeros((1, 119, 8, 8), dtype=np.float32) |
|
|
|
|
|
|
|
|
piece_map = board.piece_map() |
|
|
piece_to_channel = { |
|
|
chess.PAWN: 0, chess.KNIGHT: 1, chess.BISHOP: 2, |
|
|
chess.ROOK: 3, chess.QUEEN: 4, chess.KING: 5 |
|
|
} |
|
|
|
|
|
for square, piece in piece_map.items(): |
|
|
rank = square // 8 |
|
|
file = square % 8 |
|
|
channel = piece_to_channel[piece.piece_type] |
|
|
if piece.color == chess.BLACK: |
|
|
channel += 6 |
|
|
tensor[0, channel, rank, file] = 1.0 |
|
|
|
|
|
|
|
|
|
|
|
tensor[0, 12, :, :] = 1.0 if board.turn == chess.WHITE else 0.0 |
|
|
|
|
|
|
|
|
tensor[0, 13, :, :] = float(board.has_kingside_castling_rights(chess.WHITE)) |
|
|
tensor[0, 14, :, :] = float(board.has_queenside_castling_rights(chess.WHITE)) |
|
|
tensor[0, 15, :, :] = float(board.has_kingside_castling_rights(chess.BLACK)) |
|
|
tensor[0, 16, :, :] = float(board.has_queenside_castling_rights(chess.BLACK)) |
|
|
|
|
|
|
|
|
if board.ep_square is not None: |
|
|
ep_rank = board.ep_square // 8 |
|
|
ep_file = board.ep_square % 8 |
|
|
tensor[0, 17, ep_rank, ep_file] = 1.0 |
|
|
|
|
|
|
|
|
tensor[0, 18, :, :] = min(board.halfmove_clock / 100.0, 1.0) |
|
|
|
|
|
|
|
|
tensor[0, 19, :, :] = min(board.fullmove_number / 100.0, 1.0) |
|
|
|
|
|
|
|
|
tensor[0, 20, :, :] = float(board.is_check() and board.turn == chess.WHITE) |
|
|
tensor[0, 21, :, :] = float(board.is_check() and board.turn == chess.BLACK) |
|
|
|
|
|
|
|
|
white_pawns = len(board.pieces(chess.PAWN, chess.WHITE)) |
|
|
black_pawns = len(board.pieces(chess.PAWN, chess.BLACK)) |
|
|
tensor[0, 22, :, :] = white_pawns / 8.0 |
|
|
tensor[0, 23, :, :] = black_pawns / 8.0 |
|
|
|
|
|
white_knights = len(board.pieces(chess.KNIGHT, chess.WHITE)) |
|
|
black_knights = len(board.pieces(chess.KNIGHT, chess.BLACK)) |
|
|
tensor[0, 24, :, :] = white_knights / 2.0 |
|
|
tensor[0, 25, :, :] = black_knights / 2.0 |
|
|
|
|
|
white_bishops = len(board.pieces(chess.BISHOP, chess.WHITE)) |
|
|
black_bishops = len(board.pieces(chess.BISHOP, chess.BLACK)) |
|
|
tensor[0, 26, :, :] = white_bishops / 2.0 |
|
|
|
|
|
|
|
|
|
|
|
for square in chess.SQUARES: |
|
|
if board.is_attacked_by(chess.WHITE, square): |
|
|
rank = square // 8 |
|
|
file = square % 8 |
|
|
tensor[0, 27, rank, file] = 1.0 |
|
|
|
|
|
|
|
|
for square in chess.SQUARES: |
|
|
if board.is_attacked_by(chess.BLACK, square): |
|
|
rank = square // 8 |
|
|
file = square % 8 |
|
|
tensor[0, 28, rank, file] = 1.0 |
|
|
|
|
|
|
|
|
|
|
|
for rank in range(8): |
|
|
tensor[0, 51 + rank, rank, :] = 1.0 |
|
|
|
|
|
|
|
|
for file in range(8): |
|
|
tensor[0, 59 + file, :, file] = 1.0 |
|
|
|
|
|
|
|
|
|
|
|
center_squares = [chess.D4, chess.D5, chess.E4, chess.E5] |
|
|
for square in center_squares: |
|
|
rank = square // 8 |
|
|
file = square % 8 |
|
|
tensor[0, 67, rank, file] = 0.5 |
|
|
|
|
|
|
|
|
for color_offset, color in [(0, chess.WHITE), (1, chess.BLACK)]: |
|
|
king_square = board.king(color) |
|
|
if king_square is not None: |
|
|
king_rank = king_square // 8 |
|
|
king_file = king_square % 8 |
|
|
|
|
|
|
|
|
for dr in [-1, 0, 1]: |
|
|
for df in [-1, 0, 1]: |
|
|
r = king_rank + dr |
|
|
f = king_file + df |
|
|
if 0 <= r < 8 and 0 <= f < 8: |
|
|
tensor[0, 68 + color_offset, r, f] = 1.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return tensor |
|
|
|
|
|
def evaluate(self, fen: str) -> dict: |
|
|
""" |
|
|
Evaluate position |
|
|
|
|
|
Args: |
|
|
fen: FEN string |
|
|
|
|
|
Returns: |
|
|
dict with 'value' and optionally 'policy' |
|
|
""" |
|
|
|
|
|
input_tensor = self.fen_to_tensor(fen) |
|
|
|
|
|
|
|
|
outputs = self.session.run( |
|
|
self.output_names, |
|
|
{self.input_name: input_tensor} |
|
|
) |
|
|
|
|
|
|
|
|
result = {} |
|
|
|
|
|
|
|
|
result['value'] = float(outputs[0][0][0]) |
|
|
|
|
|
|
|
|
if len(outputs) > 1: |
|
|
result['policy'] = outputs[1][0] |
|
|
|
|
|
return result |
|
|
|
|
|
def get_size_mb(self) -> float: |
|
|
"""Get model size in MB""" |
|
|
return self.model_path.stat().st_size / (1024 * 1024) |