optz the data loading
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ import jiwer
|
|
| 5 |
import numpy as np
|
| 6 |
from functools import lru_cache
|
| 7 |
import traceback
|
|
|
|
| 8 |
|
| 9 |
# Cache the dataset loading to avoid reloading on refresh
|
| 10 |
@lru_cache(maxsize=1)
|
|
@@ -24,31 +25,69 @@ def load_data():
|
|
| 24 |
print(f"Error loading with explicit path: {str(e2)}")
|
| 25 |
raise
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
# Calculate WER for a group of examples
|
| 28 |
def calculate_wer(examples):
|
| 29 |
if not examples:
|
| 30 |
return 0.0
|
| 31 |
|
| 32 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# Filter valid examples in a single pass
|
| 34 |
valid_pairs = []
|
|
|
|
| 35 |
for ex in examples:
|
| 36 |
try:
|
| 37 |
-
#
|
| 38 |
-
if
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
-
# Only add
|
| 45 |
-
if
|
| 46 |
-
|
| 47 |
-
transcription = transcription.strip()[:1000] # Limit to 1000 chars
|
| 48 |
-
input1 = input1.strip()[:1000]
|
| 49 |
-
valid_pairs.append((transcription, input1))
|
| 50 |
except Exception as ex_error:
|
| 51 |
-
# Skip problematic examples but continue processing
|
| 52 |
print(f"Error processing example: {str(ex_error)}")
|
| 53 |
continue
|
| 54 |
|
|
@@ -57,20 +96,55 @@ def calculate_wer(examples):
|
|
| 57 |
return np.nan
|
| 58 |
|
| 59 |
# Print sample pairs for debugging
|
| 60 |
-
print(f"
|
|
|
|
|
|
|
| 61 |
print(f"Total valid pairs: {len(valid_pairs)}")
|
| 62 |
|
| 63 |
-
#
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
#
|
|
|
|
|
|
|
|
|
|
| 67 |
try:
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
return wer
|
| 71 |
except Exception as wer_error:
|
| 72 |
-
print(f"Error calculating WER: {str(wer_error)}")
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
except Exception as e:
|
| 76 |
print(f"Error in calculate_wer: {str(e)}")
|
|
@@ -80,6 +154,11 @@ def calculate_wer(examples):
|
|
| 80 |
# Get WER metrics by source
|
| 81 |
def get_wer_metrics(dataset):
|
| 82 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
# Group examples by source
|
| 84 |
examples_by_source = {}
|
| 85 |
|
|
@@ -96,6 +175,7 @@ def get_wer_metrics(dataset):
|
|
| 96 |
|
| 97 |
# Get all unique sources
|
| 98 |
all_sources = sorted(examples_by_source.keys())
|
|
|
|
| 99 |
|
| 100 |
# Calculate metrics for each source
|
| 101 |
results = []
|
|
@@ -105,8 +185,8 @@ def get_wer_metrics(dataset):
|
|
| 105 |
count = len(examples)
|
| 106 |
|
| 107 |
if count > 0:
|
| 108 |
-
print(f"
|
| 109 |
-
wer = calculate_wer(examples)
|
| 110 |
else:
|
| 111 |
wer = np.nan
|
| 112 |
|
|
@@ -123,11 +203,13 @@ def get_wer_metrics(dataset):
|
|
| 123 |
"WER": np.nan
|
| 124 |
})
|
| 125 |
|
| 126 |
-
# Calculate overall metrics
|
| 127 |
try:
|
| 128 |
total_count = len(dataset)
|
| 129 |
-
print(f"
|
| 130 |
-
|
|
|
|
|
|
|
| 131 |
|
| 132 |
results.append({
|
| 133 |
"Source": "OVERALL",
|
|
@@ -187,7 +269,7 @@ with gr.Blocks(title="ASR Text Correction Test Leaderboard") as demo:
|
|
| 187 |
refresh_btn = gr.Button("Refresh Leaderboard")
|
| 188 |
|
| 189 |
with gr.Row():
|
| 190 |
-
error_output = gr.Textbox(label="Debug Information", visible=True)
|
| 191 |
|
| 192 |
with gr.Row():
|
| 193 |
try:
|
|
@@ -202,7 +284,7 @@ with gr.Blocks(title="ASR Text Correction Test Leaderboard") as demo:
|
|
| 202 |
def refresh_and_report():
|
| 203 |
try:
|
| 204 |
df = create_leaderboard()
|
| 205 |
-
debug_info = "Leaderboard refreshed successfully."
|
| 206 |
return df, debug_info
|
| 207 |
except Exception as e:
|
| 208 |
error_msg = f"Error refreshing leaderboard: {str(e)}\n{traceback.format_exc()}"
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
from functools import lru_cache
|
| 7 |
import traceback
|
| 8 |
+
import re
|
| 9 |
|
| 10 |
# Cache the dataset loading to avoid reloading on refresh
|
| 11 |
@lru_cache(maxsize=1)
|
|
|
|
| 25 |
print(f"Error loading with explicit path: {str(e2)}")
|
| 26 |
raise
|
| 27 |
|
| 28 |
+
# Preprocess text for better WER calculation
|
| 29 |
+
def preprocess_text(text):
|
| 30 |
+
if not text or not isinstance(text, str):
|
| 31 |
+
return ""
|
| 32 |
+
# Convert to lowercase
|
| 33 |
+
text = text.lower()
|
| 34 |
+
# Remove punctuation
|
| 35 |
+
text = re.sub(r'[^\w\s]', '', text)
|
| 36 |
+
# Remove extra whitespace
|
| 37 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 38 |
+
return text
|
| 39 |
+
|
| 40 |
# Calculate WER for a group of examples
|
| 41 |
def calculate_wer(examples):
|
| 42 |
if not examples:
|
| 43 |
return 0.0
|
| 44 |
|
| 45 |
try:
|
| 46 |
+
# First, let's examine the first example in detail
|
| 47 |
+
if examples and len(examples) > 0:
|
| 48 |
+
example = examples[0]
|
| 49 |
+
print("\n===== EXAMPLE DATA INSPECTION =====")
|
| 50 |
+
print(f"Keys in example: {example.keys()}")
|
| 51 |
+
|
| 52 |
+
# Try different possible field names
|
| 53 |
+
possible_reference_fields = ["transcription", "reference", "ground_truth", "target"]
|
| 54 |
+
possible_hypothesis_fields = ["input1", "hypothesis", "asr_output", "source_text"]
|
| 55 |
+
|
| 56 |
+
for field in possible_reference_fields:
|
| 57 |
+
if field in example:
|
| 58 |
+
print(f"Reference field '{field}' found with value: {str(example[field])[:100]}...")
|
| 59 |
+
|
| 60 |
+
for field in possible_hypothesis_fields:
|
| 61 |
+
if field in example:
|
| 62 |
+
print(f"Hypothesis field '{field}' found with value: {str(example[field])[:100]}...")
|
| 63 |
+
|
| 64 |
# Filter valid examples in a single pass
|
| 65 |
valid_pairs = []
|
| 66 |
+
|
| 67 |
for ex in examples:
|
| 68 |
try:
|
| 69 |
+
# First try the expected field names
|
| 70 |
+
if "transcription" in ex and "input1" in ex:
|
| 71 |
+
reference = ex["transcription"]
|
| 72 |
+
hypothesis = ex["input1"]
|
| 73 |
+
# Try alternate field pairs if the standard ones don't exist
|
| 74 |
+
elif "transcription" in ex and "hypothesis_concatenated" in ex and ex["hypothesis_concatenated"]:
|
| 75 |
+
reference = ex["transcription"]
|
| 76 |
+
hypothesis = ex["hypothesis_concatenated"].split('.')[0] # Take first sentence
|
| 77 |
+
elif "reference" in ex and "hypothesis" in ex:
|
| 78 |
+
reference = ex["reference"]
|
| 79 |
+
hypothesis = ex["hypothesis"]
|
| 80 |
+
else:
|
| 81 |
+
continue # Skip this example if we can't find matching fields
|
| 82 |
|
| 83 |
+
# Clean and preprocess the text
|
| 84 |
+
reference = preprocess_text(reference)
|
| 85 |
+
hypothesis = preprocess_text(hypothesis)
|
| 86 |
|
| 87 |
+
# Only add if both have valid content
|
| 88 |
+
if reference and hypothesis:
|
| 89 |
+
valid_pairs.append((reference, hypothesis))
|
|
|
|
|
|
|
|
|
|
| 90 |
except Exception as ex_error:
|
|
|
|
| 91 |
print(f"Error processing example: {str(ex_error)}")
|
| 92 |
continue
|
| 93 |
|
|
|
|
| 96 |
return np.nan
|
| 97 |
|
| 98 |
# Print sample pairs for debugging
|
| 99 |
+
print(f"\nSample pair for WER calculation:")
|
| 100 |
+
print(f"Reference: '{valid_pairs[0][0]}'")
|
| 101 |
+
print(f"Hypothesis: '{valid_pairs[0][1]}'")
|
| 102 |
print(f"Total valid pairs: {len(valid_pairs)}")
|
| 103 |
|
| 104 |
+
# Make sure we have enough valid examples
|
| 105 |
+
if len(valid_pairs) < 5:
|
| 106 |
+
print("WARNING: Very few valid pairs for WER calculation")
|
| 107 |
+
if len(valid_pairs) < 2:
|
| 108 |
+
print("Not enough data for reliable WER calculation")
|
| 109 |
+
return np.nan
|
| 110 |
|
| 111 |
+
# Unzip the pairs
|
| 112 |
+
references, hypotheses = zip(*valid_pairs)
|
| 113 |
+
|
| 114 |
+
# Calculate WER with additional transforms
|
| 115 |
try:
|
| 116 |
+
# Set up transformation pipeline for jiwer
|
| 117 |
+
transformation = jiwer.Compose([
|
| 118 |
+
jiwer.ToLowerCase(),
|
| 119 |
+
jiwer.RemoveMultipleSpaces(),
|
| 120 |
+
jiwer.Strip(),
|
| 121 |
+
jiwer.RemovePunctuation(),
|
| 122 |
+
jiwer.ReduceToListOfWords()
|
| 123 |
+
])
|
| 124 |
+
|
| 125 |
+
# Calculate WER with transformations
|
| 126 |
+
wer = jiwer.wer(
|
| 127 |
+
references,
|
| 128 |
+
hypotheses,
|
| 129 |
+
truth_transform=transformation,
|
| 130 |
+
hypothesis_transform=transformation
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
print(f"Successfully calculated WER: {wer}")
|
| 134 |
return wer
|
| 135 |
except Exception as wer_error:
|
| 136 |
+
print(f"Error calculating WER with jiwer: {str(wer_error)}")
|
| 137 |
+
|
| 138 |
+
# Fallback: Calculate character error rate manually for one sample
|
| 139 |
+
try:
|
| 140 |
+
if valid_pairs:
|
| 141 |
+
ref = valid_pairs[0][0]
|
| 142 |
+
hyp = valid_pairs[0][1]
|
| 143 |
+
distance = jiwer.transforms.cer(ref, hyp)
|
| 144 |
+
print(f"Fallback CER for first sample: {distance}")
|
| 145 |
+
return np.nan
|
| 146 |
+
except:
|
| 147 |
+
return np.nan
|
| 148 |
|
| 149 |
except Exception as e:
|
| 150 |
print(f"Error in calculate_wer: {str(e)}")
|
|
|
|
| 154 |
# Get WER metrics by source
|
| 155 |
def get_wer_metrics(dataset):
|
| 156 |
try:
|
| 157 |
+
# Print dataset info
|
| 158 |
+
print(f"\n===== DATASET INFO =====")
|
| 159 |
+
print(f"Dataset size: {len(dataset)}")
|
| 160 |
+
print(f"Dataset features: {dataset.features}")
|
| 161 |
+
|
| 162 |
# Group examples by source
|
| 163 |
examples_by_source = {}
|
| 164 |
|
|
|
|
| 175 |
|
| 176 |
# Get all unique sources
|
| 177 |
all_sources = sorted(examples_by_source.keys())
|
| 178 |
+
print(f"Found sources: {all_sources}")
|
| 179 |
|
| 180 |
# Calculate metrics for each source
|
| 181 |
results = []
|
|
|
|
| 185 |
count = len(examples)
|
| 186 |
|
| 187 |
if count > 0:
|
| 188 |
+
print(f"\nCalculating WER for source {source} with {count} examples")
|
| 189 |
+
wer = calculate_wer(examples[:100]) # Start with a sample for debugging
|
| 190 |
else:
|
| 191 |
wer = np.nan
|
| 192 |
|
|
|
|
| 203 |
"WER": np.nan
|
| 204 |
})
|
| 205 |
|
| 206 |
+
# Calculate overall metrics with a sample
|
| 207 |
try:
|
| 208 |
total_count = len(dataset)
|
| 209 |
+
print(f"\nCalculating overall WER with a sample of examples")
|
| 210 |
+
# Use a sample for overall calculation to avoid overloading
|
| 211 |
+
sample_size = min(1000, total_count)
|
| 212 |
+
overall_wer = calculate_wer(dataset[:sample_size])
|
| 213 |
|
| 214 |
results.append({
|
| 215 |
"Source": "OVERALL",
|
|
|
|
| 269 |
refresh_btn = gr.Button("Refresh Leaderboard")
|
| 270 |
|
| 271 |
with gr.Row():
|
| 272 |
+
error_output = gr.Textbox(label="Debug Information", visible=True, lines=10)
|
| 273 |
|
| 274 |
with gr.Row():
|
| 275 |
try:
|
|
|
|
| 284 |
def refresh_and_report():
|
| 285 |
try:
|
| 286 |
df = create_leaderboard()
|
| 287 |
+
debug_info = "Leaderboard refreshed successfully. Check console for detailed debug information."
|
| 288 |
return df, debug_info
|
| 289 |
except Exception as e:
|
| 290 |
error_msg = f"Error refreshing leaderboard: {str(e)}\n{traceback.format_exc()}"
|