Update: Auto-evaluation on Space startup
Browse files- README.md +10 -9
- afcl/app.py +274 -290
- app.py +3 -3
- requirements.txt +1 -1
README.md
CHANGED
|
@@ -29,22 +29,23 @@ The **Arabic Function Calling Leaderboard (AFCL)** evaluates Large Language Mode
|
|
| 29 |
4. Handle parallel and complex function calls
|
| 30 |
5. Detect when no function should be called
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
## Dataset
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
| 35 |
- Simple, Multiple, Parallel, Parallel Multiple
|
| 36 |
- Irrelevance Detection
|
| 37 |
- Dialect Handling (Egyptian, Gulf, Levantine)
|
| 38 |
-
- Programming APIs (Java, JavaScript, REST, SQL)
|
| 39 |
-
|
| 40 |
-
📊 **Dataset**: [HeshamHaroon/Arabic_Function_Calling](https://huggingface.co/datasets/HeshamHaroon/Arabic_Function_Calling)
|
| 41 |
|
| 42 |
-
##
|
| 43 |
|
| 44 |
-
|
| 45 |
-
1. Go to the "Submit" tab
|
| 46 |
-
2. Fill in your model details
|
| 47 |
-
3. Your model will be added to the evaluation queue
|
| 48 |
|
| 49 |
## Citation
|
| 50 |
|
|
|
|
| 29 |
4. Handle parallel and complex function calls
|
| 30 |
5. Detect when no function should be called
|
| 31 |
|
| 32 |
+
## Models Evaluated
|
| 33 |
+
|
| 34 |
+
- **Arabic-Native**: Jais, ALLaM, SILMA, AceGPT
|
| 35 |
+
- **Multilingual**: Qwen, Llama, Gemma, Mistral, Phi, BLOOMZ, Aya
|
| 36 |
+
|
| 37 |
## Dataset
|
| 38 |
|
| 39 |
+
📊 **Dataset**: [HeshamHaroon/Arabic_Function_Calling](https://huggingface.co/datasets/HeshamHaroon/Arabic_Function_Calling)
|
| 40 |
+
|
| 41 |
+
- **147 test samples** across 10 categories
|
| 42 |
- Simple, Multiple, Parallel, Parallel Multiple
|
| 43 |
- Irrelevance Detection
|
| 44 |
- Dialect Handling (Egyptian, Gulf, Levantine)
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
## Evaluation
|
| 47 |
|
| 48 |
+
The leaderboard automatically evaluates models using the HuggingFace Inference API when the Space starts.
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
## Citation
|
| 51 |
|
afcl/app.py
CHANGED
|
@@ -2,21 +2,22 @@
|
|
| 2 |
Arabic Function Calling Leaderboard (AFCL)
|
| 3 |
==========================================
|
| 4 |
|
| 5 |
-
A Gradio-based leaderboard
|
|
|
|
| 6 |
"""
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import pandas as pd
|
| 10 |
import json
|
| 11 |
import os
|
|
|
|
|
|
|
|
|
|
| 12 |
from pathlib import Path
|
| 13 |
from typing import Dict, List, Optional
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
load_leaderboard, save_leaderboard, load_benchmark,
|
| 18 |
-
calculate_overall_score, CATEGORY_WEIGHTS
|
| 19 |
-
)
|
| 20 |
|
| 21 |
# Constants
|
| 22 |
TITLE = "🏆 Arabic Function Calling Leaderboard"
|
|
@@ -28,330 +29,313 @@ The **Arabic Function Calling Leaderboard (AFCL)** evaluates Large Language Mode
|
|
| 28 |
**لوحة تقييم استدعاء الدوال بالعربية** تقيّم نماذج اللغة الكبيرة على قدرتها على فهم الاستعلامات العربية وإنشاء استدعاءات الدوال المناسبة.
|
| 29 |
"""
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
"model":
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
| 52 |
try:
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
return
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
for col in df.columns:
|
| 83 |
-
if df[col].dtype in ['float64', 'float32']:
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
# Format status column
|
| 87 |
-
status_col = "الحالة" if use_arabic else "Status"
|
| 88 |
-
if status_col in df.columns:
|
| 89 |
-
df[status_col] = df[status_col].apply(
|
| 90 |
-
lambda x: "⏳ قيد الانتظار" if x == "pending" else "✅ مكتمل"
|
| 91 |
-
if use_arabic else "⏳ Pending" if x == "pending" else "✅ Done"
|
| 92 |
-
)
|
| 93 |
|
| 94 |
return df
|
| 95 |
|
| 96 |
|
| 97 |
-
def create_models_list_tab():
|
| 98 |
-
"""Create the models list tab showing all models to be evaluated."""
|
| 99 |
-
data = get_leaderboard_data()
|
| 100 |
-
|
| 101 |
-
# Group by organization
|
| 102 |
-
orgs = {}
|
| 103 |
-
for entry in data:
|
| 104 |
-
org = entry.get("organization", "Other")
|
| 105 |
-
if org not in orgs:
|
| 106 |
-
orgs[org] = []
|
| 107 |
-
orgs[org].append(entry)
|
| 108 |
-
|
| 109 |
-
# Create markdown content
|
| 110 |
-
md_content = """
|
| 111 |
-
## 📋 Models Queue | قائمة النماذج للتقييم
|
| 112 |
-
|
| 113 |
-
The following **{total}** models are queued for evaluation on the Arabic Function Calling benchmark:
|
| 114 |
-
|
| 115 |
-
النماذج التالية (**{total}** نموذج) في قائمة الانتظار للتقييم:
|
| 116 |
-
|
| 117 |
-
---
|
| 118 |
-
|
| 119 |
-
""".format(total=len(data))
|
| 120 |
-
|
| 121 |
-
for org, models in sorted(orgs.items()):
|
| 122 |
-
md_content += f"### {org}\n"
|
| 123 |
-
for m in models:
|
| 124 |
-
model_url = m.get("model_url", "#")
|
| 125 |
-
md_content += f"- [{m['model']}]({model_url}) - ⏳ Pending\n"
|
| 126 |
-
md_content += "\n"
|
| 127 |
-
|
| 128 |
-
return gr.Markdown(md_content)
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
def create_submit_tab():
|
| 132 |
-
"""Create the model submission tab."""
|
| 133 |
-
with gr.Column():
|
| 134 |
-
gr.Markdown("""
|
| 135 |
-
## 📤 Submit Your Model | أرسل نموذجك
|
| 136 |
-
|
| 137 |
-
To submit a model for evaluation, provide the following information:
|
| 138 |
-
|
| 139 |
-
لإرسال نموذج للتقييم، قدم المعلومات التالية:
|
| 140 |
-
""")
|
| 141 |
-
|
| 142 |
-
with gr.Row():
|
| 143 |
-
model_name = gr.Textbox(
|
| 144 |
-
label="Model Name | اسم النموذج",
|
| 145 |
-
placeholder="e.g., my-arabic-llm-7b"
|
| 146 |
-
)
|
| 147 |
-
model_type = gr.Dropdown(
|
| 148 |
-
label="Model Type | نوع النموذج",
|
| 149 |
-
choices=["HuggingFace Hub", "API Endpoint", "Local Model"],
|
| 150 |
-
value="HuggingFace Hub"
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
model_path = gr.Textbox(
|
| 154 |
-
label="Model Path/Endpoint | مسار النموذج",
|
| 155 |
-
placeholder="e.g., organization/model-name or https://api.example.com/v1"
|
| 156 |
-
)
|
| 157 |
-
|
| 158 |
-
precision = gr.Dropdown(
|
| 159 |
-
label="Precision | الدقة",
|
| 160 |
-
choices=["float16", "bfloat16", "float32", "int8", "int4"],
|
| 161 |
-
value="float16"
|
| 162 |
-
)
|
| 163 |
-
|
| 164 |
-
with gr.Row():
|
| 165 |
-
base_model = gr.Textbox(
|
| 166 |
-
label="Base Model (if fine-tuned) | النموذج الأساسي",
|
| 167 |
-
placeholder="e.g., meta-llama/Llama-2-7b"
|
| 168 |
-
)
|
| 169 |
-
license_type = gr.Dropdown(
|
| 170 |
-
label="License | الرخصة",
|
| 171 |
-
choices=["Apache-2.0", "MIT", "CC-BY-4.0", "Llama 2", "Other"],
|
| 172 |
-
value="Apache-2.0"
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
-
submit_btn = gr.Button("Submit for Evaluation | أرسل للتقييم", variant="primary")
|
| 176 |
-
|
| 177 |
-
result_text = gr.Markdown("")
|
| 178 |
-
|
| 179 |
-
def handle_submission(name, mtype, path, prec, base, lic):
|
| 180 |
-
if not name or not path:
|
| 181 |
-
return "❌ Please fill in the required fields | يرجى ملء الحقول المطلوبة"
|
| 182 |
-
return f"""
|
| 183 |
-
✅ **Submission Received | تم استلام الطلب**
|
| 184 |
-
|
| 185 |
-
- Model: {name}
|
| 186 |
-
- Type: {mtype}
|
| 187 |
-
- Path: {path}
|
| 188 |
-
|
| 189 |
-
Your model will be evaluated and added to the leaderboard soon.
|
| 190 |
-
|
| 191 |
-
سيتم تقييم نموذجك وإضافته إلى لوحة التقييم قريباً.
|
| 192 |
-
"""
|
| 193 |
-
|
| 194 |
-
submit_btn.click(
|
| 195 |
-
fn=handle_submission,
|
| 196 |
-
inputs=[model_name, model_type, model_path, precision, base_model, license_type],
|
| 197 |
-
outputs=result_text
|
| 198 |
-
)
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
def create_about_tab():
|
| 202 |
-
"""Create the about/methodology tab."""
|
| 203 |
-
return gr.Markdown("""
|
| 204 |
-
# About AFCL | عن لوحة التقييم
|
| 205 |
-
|
| 206 |
-
## Evaluation Categories | فئات التقييم
|
| 207 |
-
|
| 208 |
-
| Category | الفئة | Samples | Description |
|
| 209 |
-
|----------|-------|---------|-------------|
|
| 210 |
-
| Simple | بسيط | 200 | Single function, single call |
|
| 211 |
-
| Multiple | متعدد | 200 | Select correct function from options |
|
| 212 |
-
| Parallel | متوازي | 200 | Multiple calls of same function |
|
| 213 |
-
| Parallel Multiple | متوازي متعدد | 200 | Multiple functions, multiple calls |
|
| 214 |
-
| Irrelevance | اللا صلة | 200 | No function should be called |
|
| 215 |
-
| Dialect Handling | اللهجات | 150 | Egyptian/Gulf/Levantine queries |
|
| 216 |
-
| Java | جافا | 100 | Java API function calls |
|
| 217 |
-
| JavaScript | جافاسكريبت | 50 | JS function calls |
|
| 218 |
-
| REST | REST | 70 | REST API calls |
|
| 219 |
-
| SQL | SQL | 100 | SQL query generation |
|
| 220 |
-
|
| 221 |
-
**Total: 1,470 samples**
|
| 222 |
-
|
| 223 |
-
## Scoring Formula | معادلة التقييم
|
| 224 |
-
|
| 225 |
-
```
|
| 226 |
-
Overall Score = Σ (category_score × weight)
|
| 227 |
-
```
|
| 228 |
-
|
| 229 |
-
**Weights | الأوزان:**
|
| 230 |
-
- Simple: 15%
|
| 231 |
-
- Multiple: 10%
|
| 232 |
-
- Parallel: 10%
|
| 233 |
-
- Parallel Multiple: 10%
|
| 234 |
-
- Irrelevance: 15%
|
| 235 |
-
- Dialect Handling: 15%
|
| 236 |
-
- Multi-Turn: 15%
|
| 237 |
-
- Native Arabic: 10%
|
| 238 |
-
|
| 239 |
-
## Dataset | مجموعة البيانات
|
| 240 |
-
|
| 241 |
-
📊 **[HeshamHaroon/Arabic_Function_Calling](https://huggingface.co/datasets/HeshamHaroon/Arabic_Function_Calling)**
|
| 242 |
-
|
| 243 |
-
- **Total Samples**: 1,470
|
| 244 |
-
- **Languages**: Arabic (MSA + Dialects) & English
|
| 245 |
-
- **Categories**: 10 evaluation categories
|
| 246 |
-
- **Source**: Translated from BFCL with dialect variants
|
| 247 |
-
|
| 248 |
-
## Citation | الاقتباس
|
| 249 |
-
|
| 250 |
-
```bibtex
|
| 251 |
-
@misc{afcl2024,
|
| 252 |
-
title={Arabic Function Calling Leaderboard},
|
| 253 |
-
author={Hesham Haroon},
|
| 254 |
-
year={2024},
|
| 255 |
-
url={https://huggingface.co/spaces/HeshamHaroon/Arabic-Function-Calling-Leaderboard}
|
| 256 |
-
}
|
| 257 |
-
```
|
| 258 |
-
""")
|
| 259 |
-
|
| 260 |
-
|
| 261 |
def create_app():
|
| 262 |
-
"""Create the
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
custom_css = ""
|
| 266 |
-
if css_path.exists():
|
| 267 |
-
with open(css_path, "r") as f:
|
| 268 |
-
custom_css = f.read()
|
| 269 |
-
|
| 270 |
-
with gr.Blocks(
|
| 271 |
-
title="Arabic Function Calling Leaderboard",
|
| 272 |
-
css=custom_css,
|
| 273 |
-
theme=gr.themes.Soft()
|
| 274 |
-
) as app:
|
| 275 |
-
# Header
|
| 276 |
gr.Markdown(f"""
|
| 277 |
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #1a5f2a 0%, #2d8f4a 100%); border-radius: 12px; color: white; margin-bottom: 20px;">
|
| 278 |
-
<h1
|
| 279 |
-
<h2
|
| 280 |
-
<p
|
| 281 |
</div>
|
| 282 |
""")
|
| 283 |
|
| 284 |
gr.Markdown(DESCRIPTION)
|
| 285 |
|
| 286 |
-
# Stats row
|
| 287 |
-
data = get_leaderboard_data()
|
| 288 |
-
evaluated = len([d for d in data if d.get("status") != "pending"])
|
| 289 |
-
pending = len([d for d in data if d.get("status") == "pending"])
|
| 290 |
-
|
| 291 |
with gr.Row():
|
| 292 |
gr.Markdown(f"""
|
| 293 |
<div style="text-align: center; padding: 15px; background: #f5f5f5; border-radius: 8px;">
|
| 294 |
-
<div style="font-size: 2rem; font-weight: bold; color: #1a5f2a;">{len(
|
| 295 |
-
<div
|
| 296 |
</div>
|
| 297 |
""")
|
| 298 |
-
gr.Markdown(
|
| 299 |
-
<div style="text-align: center; padding: 15px; background: #
|
| 300 |
-
<div style="font-size: 2rem; font-weight: bold; color: #
|
| 301 |
-
<div
|
| 302 |
</div>
|
| 303 |
""")
|
| 304 |
gr.Markdown("""
|
| 305 |
<div style="text-align: center; padding: 15px; background: #f5f5f5; border-radius: 8px;">
|
| 306 |
-
<div style="font-size: 2rem; font-weight: bold; color: #1a5f2a;">
|
| 307 |
-
<div
|
| 308 |
</div>
|
| 309 |
""")
|
| 310 |
|
| 311 |
-
|
| 312 |
-
if pending > 0:
|
| 313 |
-
gr.Markdown(f"""
|
| 314 |
-
<div style="padding: 15px; background: #fff3cd; border: 1px solid #ffc107; border-radius: 8px; margin: 15px 0;">
|
| 315 |
-
⏳ <strong>Evaluation in Progress | التقييم قيد التنفيذ</strong><br>
|
| 316 |
-
{pending} models are waiting to be evaluated. Results will be updated as evaluations complete.<br>
|
| 317 |
-
{pending} نموذج في انتظار التقييم. سيتم تحديث النتائج فور اكتمال التقييم.
|
| 318 |
-
</div>
|
| 319 |
-
""")
|
| 320 |
|
| 321 |
-
# Tabs
|
| 322 |
with gr.Tabs():
|
| 323 |
-
with gr.TabItem("🏆 Leaderboard
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
interactive=False,
|
| 328 |
-
wrap=True,
|
| 329 |
)
|
| 330 |
|
| 331 |
-
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
|
|
|
| 339 |
|
| 340 |
-
# Footer
|
| 341 |
gr.Markdown("""
|
| 342 |
---
|
| 343 |
-
<div style="text-align: center; color: #666;
|
| 344 |
-
Built
|
| 345 |
-
<br>
|
| 346 |
-
<a href="https://huggingface.co/datasets/HeshamHaroon/Arabic_Function_Calling">Dataset</a> |
|
| 347 |
-
<a href="https://github.com/HeshamHaroon">GitHub</a>
|
| 348 |
</div>
|
| 349 |
""")
|
| 350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
return app
|
| 352 |
|
| 353 |
|
| 354 |
-
|
|
|
|
| 355 |
if __name__ == "__main__":
|
| 356 |
-
app = create_app()
|
| 357 |
app.launch()
|
|
|
|
| 2 |
Arabic Function Calling Leaderboard (AFCL)
|
| 3 |
==========================================
|
| 4 |
|
| 5 |
+
A Gradio-based leaderboard that evaluates LLMs on Arabic function calling.
|
| 6 |
+
Evaluation runs on HuggingFace Space infrastructure.
|
| 7 |
"""
|
| 8 |
|
| 9 |
import gradio as gr
|
| 10 |
import pandas as pd
|
| 11 |
import json
|
| 12 |
import os
|
| 13 |
+
import re
|
| 14 |
+
import time
|
| 15 |
+
import requests
|
| 16 |
from pathlib import Path
|
| 17 |
from typing import Dict, List, Optional
|
| 18 |
+
from threading import Thread
|
| 19 |
+
from datasets import load_dataset
|
| 20 |
+
import huggingface_hub
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Constants
|
| 23 |
TITLE = "🏆 Arabic Function Calling Leaderboard"
|
|
|
|
| 29 |
**لوحة تقييم استدعاء الدوال بالعربية** تقيّم نماذج اللغة الكبيرة على قدرتها على فهم الاستعلامات العربية وإنشاء استدعاءات الدوال المناسبة.
|
| 30 |
"""
|
| 31 |
|
| 32 |
+
# Models to evaluate
|
| 33 |
+
MODELS_TO_EVALUATE = [
|
| 34 |
+
{"model": "Jais-30B-Chat", "model_id": "inceptionai/jais-30b-chat-v3", "organization": "Inception AI"},
|
| 35 |
+
{"model": "ALLaM-7B-Instruct", "model_id": "sdaia/allam-1-7b-instruct", "organization": "SDAIA"},
|
| 36 |
+
{"model": "SILMA-9B-Instruct", "model_id": "silma-ai/SILMA-9B-Instruct-v1.0", "organization": "Silma AI"},
|
| 37 |
+
{"model": "AceGPT-13B-Chat", "model_id": "FreedomIntelligence/AceGPT-13B-chat", "organization": "FreedomIntelligence"},
|
| 38 |
+
{"model": "BLOOMZ-7B1", "model_id": "bigscience/bloomz-7b1", "organization": "BigScience"},
|
| 39 |
+
{"model": "Aya-Expanse-8B", "model_id": "CohereForAI/aya-expanse-8b", "organization": "Cohere For AI"},
|
| 40 |
+
{"model": "Qwen2.5-7B-Instruct", "model_id": "Qwen/Qwen2.5-7B-Instruct", "organization": "Alibaba Qwen"},
|
| 41 |
+
{"model": "Llama-3.1-8B-Instruct", "model_id": "meta-llama/Llama-3.1-8B-Instruct", "organization": "Meta"},
|
| 42 |
+
{"model": "Gemma-2-9B-IT", "model_id": "google/gemma-2-9b-it", "organization": "Google"},
|
| 43 |
+
{"model": "Mistral-7B-Instruct", "model_id": "mistralai/Mistral-7B-Instruct-v0.3", "organization": "Mistral AI"},
|
| 44 |
+
{"model": "Phi-3-Mini-Instruct", "model_id": "microsoft/Phi-3-mini-4k-instruct", "organization": "Microsoft"},
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
# Global state
|
| 48 |
+
LEADERBOARD_DATA = []
|
| 49 |
+
EVALUATION_STATUS = "Not started"
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_evaluation_dataset():
|
| 53 |
+
"""Load the Arabic FC dataset from HuggingFace."""
|
| 54 |
try:
|
| 55 |
+
dataset = load_dataset("HeshamHaroon/Arabic_Function_Calling", split="test")
|
| 56 |
+
samples = []
|
| 57 |
+
for item in dataset:
|
| 58 |
+
sample = {
|
| 59 |
+
'id': item['id'],
|
| 60 |
+
'query_ar': item['query_ar'],
|
| 61 |
+
'functions': json.loads(item['functions']) if item['functions'] else [],
|
| 62 |
+
'ground_truth': json.loads(item['ground_truth']) if item['ground_truth'] else None,
|
| 63 |
+
'category': item['category'],
|
| 64 |
+
}
|
| 65 |
+
samples.append(sample)
|
| 66 |
+
return samples
|
| 67 |
+
except Exception as e:
|
| 68 |
+
print(f"Error loading dataset: {e}")
|
| 69 |
+
return []
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def create_prompt(query: str, functions: List[Dict]) -> str:
|
| 73 |
+
"""Create evaluation prompt."""
|
| 74 |
+
func_desc = "You are a function calling AI. Given the user query and available functions, respond with a JSON function call.\n\nAvailable functions:\n"
|
| 75 |
+
for f in functions:
|
| 76 |
+
func_desc += f"- {f.get('name')}: {f.get('description', '')}\n"
|
| 77 |
+
|
| 78 |
+
return f"""{func_desc}
|
| 79 |
+
|
| 80 |
+
User Query (Arabic): {query}
|
| 81 |
+
|
| 82 |
+
Respond ONLY with a JSON object:
|
| 83 |
+
{{"name": "function_name", "arguments": {{"param1": "value1"}}}}
|
| 84 |
+
|
| 85 |
+
If no function should be called:
|
| 86 |
+
{{"name": null, "arguments": {{}}}}
|
| 87 |
+
|
| 88 |
+
JSON Response:"""
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def call_model(model_id: str, prompt: str) -> str:
|
| 92 |
+
"""Call model via HuggingFace Inference API."""
|
| 93 |
+
token = os.getenv("HF_TOKEN", "")
|
| 94 |
+
headers = {"Authorization": f"Bearer {token}"}
|
| 95 |
+
url = f"https://api-inference.huggingface.co/models/{model_id}"
|
| 96 |
+
|
| 97 |
+
payload = {
|
| 98 |
+
"inputs": prompt,
|
| 99 |
+
"parameters": {"max_new_tokens": 200, "temperature": 0.1}
|
| 100 |
+
}
|
| 101 |
|
| 102 |
+
try:
|
| 103 |
+
response = requests.post(url, headers=headers, json=payload, timeout=60)
|
| 104 |
+
if response.status_code == 503:
|
| 105 |
+
time.sleep(20)
|
| 106 |
+
response = requests.post(url, headers=headers, json=payload, timeout=60)
|
| 107 |
+
|
| 108 |
+
result = response.json()
|
| 109 |
+
if isinstance(result, list) and result:
|
| 110 |
+
return result[0].get("generated_text", "")
|
| 111 |
+
return str(result)
|
| 112 |
+
except:
|
| 113 |
+
return ""
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def parse_response(response: str) -> Optional[Dict]:
|
| 117 |
+
"""Parse function call from response."""
|
| 118 |
+
if not response:
|
| 119 |
+
return None
|
| 120 |
+
try:
|
| 121 |
+
return json.loads(response.strip())
|
| 122 |
+
except:
|
| 123 |
+
pass
|
| 124 |
+
match = re.search(r'\{[^{}]*"name"[^{}]*\}', response)
|
| 125 |
+
if match:
|
| 126 |
+
try:
|
| 127 |
+
return json.loads(match.group())
|
| 128 |
+
except:
|
| 129 |
+
pass
|
| 130 |
+
if any(x in response.lower() for x in ['null', 'none', 'لا يمكن']):
|
| 131 |
+
return {"name": None}
|
| 132 |
+
return None
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def evaluate_sample(model_id: str, sample: Dict) -> float:
|
| 136 |
+
"""Evaluate single sample."""
|
| 137 |
+
query = sample.get('query_ar', '')
|
| 138 |
+
functions = sample.get('functions', [])
|
| 139 |
+
category = sample.get('category', '')
|
| 140 |
+
ground_truth = sample.get('ground_truth')
|
| 141 |
+
|
| 142 |
+
prompt = create_prompt(query, functions)
|
| 143 |
+
response = call_model(model_id, prompt)
|
| 144 |
+
parsed = parse_response(response)
|
| 145 |
+
|
| 146 |
+
if category == 'irrelevance':
|
| 147 |
+
return 1.0 if (parsed is None or parsed.get('name') is None) else 0.0
|
| 148 |
+
|
| 149 |
+
if not ground_truth or not parsed:
|
| 150 |
+
return 0.0
|
| 151 |
+
|
| 152 |
+
expected = ground_truth.get('calls', [ground_truth])[0] if isinstance(ground_truth, dict) else ground_truth
|
| 153 |
+
|
| 154 |
+
if str(parsed.get('name', '')).lower() != str(expected.get('name', '')).lower():
|
| 155 |
+
return 0.0
|
| 156 |
+
|
| 157 |
+
pred_args = parsed.get('arguments', {})
|
| 158 |
+
exp_args = expected.get('arguments', {})
|
| 159 |
+
if not exp_args:
|
| 160 |
+
return 1.0
|
| 161 |
+
|
| 162 |
+
matched = sum(1 for k, v in exp_args.items() if str(pred_args.get(k, '')).lower() == str(v).lower())
|
| 163 |
+
return matched / len(exp_args)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def run_evaluation():
|
| 167 |
+
"""Run full evaluation on all models."""
|
| 168 |
+
global LEADERBOARD_DATA, EVALUATION_STATUS
|
| 169 |
+
|
| 170 |
+
EVALUATION_STATUS = "Loading dataset..."
|
| 171 |
+
samples = load_evaluation_dataset()
|
| 172 |
+
|
| 173 |
+
if not samples:
|
| 174 |
+
EVALUATION_STATUS = "Failed to load dataset"
|
| 175 |
+
return
|
| 176 |
+
|
| 177 |
+
results = []
|
| 178 |
+
total_models = len(MODELS_TO_EVALUATE)
|
| 179 |
+
|
| 180 |
+
for idx, model_config in enumerate(MODELS_TO_EVALUATE):
|
| 181 |
+
model_name = model_config['model']
|
| 182 |
+
model_id = model_config['model_id']
|
| 183 |
+
|
| 184 |
+
EVALUATION_STATUS = f"Evaluating {model_name} ({idx+1}/{total_models})..."
|
| 185 |
+
|
| 186 |
+
category_scores = {}
|
| 187 |
+
category_counts = {}
|
| 188 |
+
|
| 189 |
+
for sample in samples:
|
| 190 |
+
cat = sample.get('category', 'simple')
|
| 191 |
+
if cat not in category_scores:
|
| 192 |
+
category_scores[cat] = 0.0
|
| 193 |
+
category_counts[cat] = 0
|
| 194 |
+
|
| 195 |
+
try:
|
| 196 |
+
score = evaluate_sample(model_id, sample)
|
| 197 |
+
category_scores[cat] += score
|
| 198 |
+
except:
|
| 199 |
+
pass
|
| 200 |
+
category_counts[cat] += 1
|
| 201 |
+
time.sleep(0.5) # Rate limiting
|
| 202 |
+
|
| 203 |
+
# Calculate scores
|
| 204 |
+
scores = {cat: round((category_scores[cat] / category_counts[cat]) * 100, 1)
|
| 205 |
+
for cat in category_scores if category_counts[cat] > 0}
|
| 206 |
+
|
| 207 |
+
# Weighted overall
|
| 208 |
+
weights = {"simple": 0.15, "multiple": 0.10, "parallel": 0.10,
|
| 209 |
+
"parallel_multiple": 0.10, "irrelevance": 0.15, "dialect_handling": 0.15}
|
| 210 |
+
overall = sum(scores.get(c, 0) * w for c, w in weights.items()) / sum(weights.values())
|
| 211 |
+
|
| 212 |
+
results.append({
|
| 213 |
+
"model": model_name,
|
| 214 |
+
"model_id": model_id,
|
| 215 |
+
"organization": model_config['organization'],
|
| 216 |
+
"overall": round(overall, 1),
|
| 217 |
+
"simple": scores.get('simple', 0),
|
| 218 |
+
"multiple": scores.get('multiple', 0),
|
| 219 |
+
"parallel": scores.get('parallel', 0),
|
| 220 |
+
"parallel_multiple": scores.get('parallel_multiple', 0),
|
| 221 |
+
"irrelevance": scores.get('irrelevance', 0),
|
| 222 |
+
"dialect_handling": scores.get('dialect_handling', 0),
|
| 223 |
+
"status": "completed"
|
| 224 |
+
})
|
| 225 |
+
|
| 226 |
+
# Sort and rank
|
| 227 |
+
results = sorted(results, key=lambda x: x['overall'], reverse=True)
|
| 228 |
+
for i, r in enumerate(results, 1):
|
| 229 |
+
r['rank'] = i
|
| 230 |
+
|
| 231 |
+
LEADERBOARD_DATA = results
|
| 232 |
+
EVALUATION_STATUS = f"Completed - {len(results)} models evaluated"
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def get_leaderboard_df():
|
| 236 |
+
"""Get leaderboard as DataFrame."""
|
| 237 |
+
if not LEADERBOARD_DATA:
|
| 238 |
+
# Return empty with pending status
|
| 239 |
+
data = [{"rank": i+1, "model": m["model"], "organization": m["organization"],
|
| 240 |
+
"overall": "-", "status": "⏳ Pending"}
|
| 241 |
+
for i, m in enumerate(MODELS_TO_EVALUATE)]
|
| 242 |
+
return pd.DataFrame(data)
|
| 243 |
+
|
| 244 |
+
df = pd.DataFrame(LEADERBOARD_DATA)
|
| 245 |
+
cols = ["rank", "model", "organization", "overall", "simple", "multiple",
|
| 246 |
+
"parallel", "parallel_multiple", "irrelevance", "dialect_handling"]
|
| 247 |
+
df = df[[c for c in cols if c in df.columns]]
|
| 248 |
+
|
| 249 |
+
# Format percentages
|
| 250 |
for col in df.columns:
|
| 251 |
+
if df[col].dtype in ['float64', 'float32', 'int64']:
|
| 252 |
+
if col != 'rank':
|
| 253 |
+
df[col] = df[col].apply(lambda x: f"{x:.1f}%")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
return df
|
| 256 |
|
| 257 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
def create_app():
|
| 259 |
+
"""Create the Gradio app."""
|
| 260 |
+
with gr.Blocks(title="Arabic FC Leaderboard", theme=gr.themes.Soft()) as app:
|
| 261 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
gr.Markdown(f"""
|
| 263 |
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #1a5f2a 0%, #2d8f4a 100%); border-radius: 12px; color: white; margin-bottom: 20px;">
|
| 264 |
+
<h1>{TITLE_AR}</h1>
|
| 265 |
+
<h2>{TITLE}</h2>
|
| 266 |
+
<p>Evaluating LLMs on Arabic Function Calling | تقييم نماذج اللغة على استدعاء الدوال بالعربية</p>
|
| 267 |
</div>
|
| 268 |
""")
|
| 269 |
|
| 270 |
gr.Markdown(DESCRIPTION)
|
| 271 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
with gr.Row():
|
| 273 |
gr.Markdown(f"""
|
| 274 |
<div style="text-align: center; padding: 15px; background: #f5f5f5; border-radius: 8px;">
|
| 275 |
+
<div style="font-size: 2rem; font-weight: bold; color: #1a5f2a;">{len(MODELS_TO_EVALUATE)}</div>
|
| 276 |
+
<div>Models | النماذج</div>
|
| 277 |
</div>
|
| 278 |
""")
|
| 279 |
+
gr.Markdown("""
|
| 280 |
+
<div style="text-align: center; padding: 15px; background: #f5f5f5; border-radius: 8px;">
|
| 281 |
+
<div style="font-size: 2rem; font-weight: bold; color: #1a5f2a;">147</div>
|
| 282 |
+
<div>Test Samples | عينات</div>
|
| 283 |
</div>
|
| 284 |
""")
|
| 285 |
gr.Markdown("""
|
| 286 |
<div style="text-align: center; padding: 15px; background: #f5f5f5; border-radius: 8px;">
|
| 287 |
+
<div style="font-size: 2rem; font-weight: bold; color: #1a5f2a;">10</div>
|
| 288 |
+
<div>Categories | الفئات</div>
|
| 289 |
</div>
|
| 290 |
""")
|
| 291 |
|
| 292 |
+
status_text = gr.Markdown(f"**Status:** {EVALUATION_STATUS}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
|
|
|
|
| 294 |
with gr.Tabs():
|
| 295 |
+
with gr.TabItem("🏆 Leaderboard"):
|
| 296 |
+
leaderboard_df = gr.DataFrame(
|
| 297 |
+
value=get_leaderboard_df(),
|
| 298 |
+
interactive=False
|
|
|
|
|
|
|
| 299 |
)
|
| 300 |
|
| 301 |
+
def refresh_leaderboard():
|
| 302 |
+
return get_leaderboard_df(), f"**Status:** {EVALUATION_STATUS}"
|
| 303 |
+
|
| 304 |
+
refresh_btn = gr.Button("🔄 Refresh | تحديث")
|
| 305 |
+
refresh_btn.click(refresh_leaderboard, outputs=[leaderboard_df, status_text])
|
| 306 |
+
|
| 307 |
+
with gr.TabItem("📊 About"):
|
| 308 |
+
gr.Markdown("""
|
| 309 |
+
## Evaluation Categories
|
| 310 |
|
| 311 |
+
| Category | Samples | Description |
|
| 312 |
+
|----------|---------|-------------|
|
| 313 |
+
| Simple | ~20 | Single function call |
|
| 314 |
+
| Multiple | ~20 | Select from multiple functions |
|
| 315 |
+
| Parallel | ~20 | Multiple calls |
|
| 316 |
+
| Parallel Multiple | ~20 | Complex multi-call |
|
| 317 |
+
| Irrelevance | ~20 | Should not call |
|
| 318 |
+
| Dialect | ~15 | Egyptian/Gulf/Levantine |
|
| 319 |
|
| 320 |
+
## Dataset
|
| 321 |
+
📊 [HeshamHaroon/Arabic_Function_Calling](https://huggingface.co/datasets/HeshamHaroon/Arabic_Function_Calling)
|
| 322 |
+
""")
|
| 323 |
|
|
|
|
| 324 |
gr.Markdown("""
|
| 325 |
---
|
| 326 |
+
<div style="text-align: center; color: #666;">
|
| 327 |
+
Built for the Arabic NLP community | بُني لمجتمع معالجة اللغة العربية
|
|
|
|
|
|
|
|
|
|
| 328 |
</div>
|
| 329 |
""")
|
| 330 |
|
| 331 |
+
# Start evaluation in background
|
| 332 |
+
if not LEADERBOARD_DATA:
|
| 333 |
+
Thread(target=run_evaluation, daemon=True).start()
|
| 334 |
+
|
| 335 |
return app
|
| 336 |
|
| 337 |
|
| 338 |
+
app = create_app()
|
| 339 |
+
|
| 340 |
if __name__ == "__main__":
|
|
|
|
| 341 |
app.launch()
|
app.py
CHANGED
|
@@ -4,7 +4,7 @@ Arabic Function Calling Leaderboard - HuggingFace Space Entry Point
|
|
| 4 |
import sys
|
| 5 |
sys.path.insert(0, ".")
|
| 6 |
|
| 7 |
-
from afcl.app import
|
| 8 |
|
| 9 |
-
|
| 10 |
-
app.launch()
|
|
|
|
| 4 |
import sys
|
| 5 |
sys.path.insert(0, ".")
|
| 6 |
|
| 7 |
+
from afcl.app import app
|
| 8 |
|
| 9 |
+
if __name__ == "__main__":
|
| 10 |
+
app.launch()
|
requirements.txt
CHANGED
|
@@ -2,4 +2,4 @@ gradio==4.44.0
|
|
| 2 |
huggingface_hub==0.25.0
|
| 3 |
datasets>=2.14.0
|
| 4 |
pandas>=2.0.0
|
| 5 |
-
|
|
|
|
| 2 |
huggingface_hub==0.25.0
|
| 3 |
datasets>=2.14.0
|
| 4 |
pandas>=2.0.0
|
| 5 |
+
requests>=2.28.0
|