Spaces:
Paused
Paused
Commit
·
168fc85
1
Parent(s):
6787f63
app.py
Browse files- app.py +9 -15
- utils/dl_utils.py +3 -3
app.py
CHANGED
|
@@ -7,7 +7,7 @@ import os
|
|
| 7 |
import time
|
| 8 |
|
| 9 |
from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model
|
| 10 |
-
from utils.image_utils import resize_image_aspect_ratio, base_generation
|
| 11 |
|
| 12 |
from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
|
| 13 |
from utils.tagger import modelLoad, analysis
|
|
@@ -27,12 +27,6 @@ dl_cn_config(cn_dir)
|
|
| 27 |
dl_tagger_model(tagger_dir)
|
| 28 |
dl_lora_model(lora_dir)
|
| 29 |
|
| 30 |
-
def make_line(img_path, sigma, gamma):
|
| 31 |
-
sigma = float(sigma )
|
| 32 |
-
gamma = float(gamma)
|
| 33 |
-
return line_process(img_path, sigma, gamma)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
def load_model(lora_dir, cn_dir):
|
| 37 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 38 |
dtype = torch.float16
|
|
@@ -42,8 +36,8 @@ def load_model(lora_dir, cn_dir):
|
|
| 42 |
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
| 43 |
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
| 44 |
)
|
| 45 |
-
pipe.load_lora_weights(lora_dir, weight_name="
|
| 46 |
-
pipe.set_adapters(["
|
| 47 |
pipe.fuse_lora()
|
| 48 |
pipe = pipe.to(device)
|
| 49 |
return pipe
|
|
@@ -52,13 +46,13 @@ def load_model(lora_dir, cn_dir):
|
|
| 52 |
@spaces.GPU
|
| 53 |
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
| 54 |
pipe = load_model(lora_dir, cn_dir)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
resize_image = resize_image_aspect_ratio(
|
| 58 |
generator = torch.manual_seed(0)
|
| 59 |
last_time = time.time()
|
| 60 |
-
prompt = "masterpiece, best quality,
|
| 61 |
-
execute_tags = ["sketch", "transparent background"]
|
| 62 |
prompt = execute_prompt(execute_tags, prompt)
|
| 63 |
prompt = remove_duplicates(prompt)
|
| 64 |
prompt = remove_color(prompt)
|
|
@@ -76,7 +70,7 @@ def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
|
| 76 |
eta=1.0,
|
| 77 |
).images[0]
|
| 78 |
print(f"Time taken: {time.time() - last_time}")
|
| 79 |
-
output_image = output_image.resize(
|
| 80 |
return output_image
|
| 81 |
|
| 82 |
|
|
|
|
| 7 |
import time
|
| 8 |
|
| 9 |
from utils.dl_utils import dl_cn_model, dl_cn_config, dl_tagger_model, dl_lora_model
|
| 10 |
+
from utils.image_utils import resize_image_aspect_ratio, base_generation
|
| 11 |
|
| 12 |
from utils.prompt_utils import execute_prompt, remove_color, remove_duplicates
|
| 13 |
from utils.tagger import modelLoad, analysis
|
|
|
|
| 27 |
dl_tagger_model(tagger_dir)
|
| 28 |
dl_lora_model(lora_dir)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def load_model(lora_dir, cn_dir):
|
| 31 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 32 |
dtype = torch.float16
|
|
|
|
| 36 |
pipe = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained(
|
| 37 |
"cagliostrolab/animagine-xl-3.1", controlnet=controlnet, vae=vae, torch_dtype=torch.float16
|
| 38 |
)
|
| 39 |
+
pipe.load_lora_weights(lora_dir, weight_name="normalmap.safetensors")
|
| 40 |
+
pipe.set_adapters(["normalmap"], adapter_weights=[1.4])
|
| 41 |
pipe.fuse_lora()
|
| 42 |
pipe = pipe.to(device)
|
| 43 |
return pipe
|
|
|
|
| 46 |
@spaces.GPU
|
| 47 |
def predict(input_image_path, prompt, negative_prompt, controlnet_scale):
|
| 48 |
pipe = load_model(lora_dir, cn_dir)
|
| 49 |
+
input_image = Image.open(input_image_path)
|
| 50 |
+
base_image = base_generation(input_image.size, (150, 110, 255, 255)).convert("RGB")
|
| 51 |
+
resize_image = resize_image_aspect_ratio(base_image)
|
| 52 |
generator = torch.manual_seed(0)
|
| 53 |
last_time = time.time()
|
| 54 |
+
prompt = "masterpiece, best quality, normal map, purple background, " + prompt
|
| 55 |
+
execute_tags = ["monochrome", "greyscale", "lineart", "white background", "sketch", "transparent background"]
|
| 56 |
prompt = execute_prompt(execute_tags, prompt)
|
| 57 |
prompt = remove_duplicates(prompt)
|
| 58 |
prompt = remove_color(prompt)
|
|
|
|
| 70 |
eta=1.0,
|
| 71 |
).images[0]
|
| 72 |
print(f"Time taken: {time.time() - last_time}")
|
| 73 |
+
output_image = output_image.resize(input_image.size, Image.LANCZOS)
|
| 74 |
return output_image
|
| 75 |
|
| 76 |
|
utils/dl_utils.py
CHANGED
|
@@ -11,7 +11,7 @@ import cv2
|
|
| 11 |
def dl_cn_model(model_dir):
|
| 12 |
folder = model_dir
|
| 13 |
file_name = 'diffusion_pytorch_model.safetensors'
|
| 14 |
-
url = "https://huggingface.co/2vXpSwA7/iroiro-lora/resolve/main/test_controlnet2/CN-
|
| 15 |
file_path = os.path.join(folder, file_name)
|
| 16 |
if not os.path.exists(file_path):
|
| 17 |
response = requests.get(url, allow_redirects=True)
|
|
@@ -57,10 +57,10 @@ def dl_tagger_model(model_dir):
|
|
| 57 |
|
| 58 |
|
| 59 |
def dl_lora_model(model_dir):
|
| 60 |
-
file_name = '
|
| 61 |
file_path = os.path.join(model_dir, file_name)
|
| 62 |
if not os.path.exists(file_path):
|
| 63 |
-
url = "https://huggingface.co/tori29umai/
|
| 64 |
response = requests.get(url, allow_redirects=True)
|
| 65 |
if response.status_code == 200:
|
| 66 |
with open(file_path, 'wb') as f:
|
|
|
|
| 11 |
def dl_cn_model(model_dir):
|
| 12 |
folder = model_dir
|
| 13 |
file_name = 'diffusion_pytorch_model.safetensors'
|
| 14 |
+
url = "https://huggingface.co/2vXpSwA7/iroiro-lora/resolve/main/test_controlnet2/CN-anytest_v3-50000_fp16.safetensors"
|
| 15 |
file_path = os.path.join(folder, file_name)
|
| 16 |
if not os.path.exists(file_path):
|
| 17 |
response = requests.get(url, allow_redirects=True)
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def dl_lora_model(model_dir):
|
| 60 |
+
file_name = 'normalmap.safetensors'
|
| 61 |
file_path = os.path.join(model_dir, file_name)
|
| 62 |
if not os.path.exists(file_path):
|
| 63 |
+
url = "https://huggingface.co/tori29umai/SDXL_shadow/resolve/main/sdxl-testlora-normalmap_04b_dim32.safetensorss"
|
| 64 |
response = requests.get(url, allow_redirects=True)
|
| 65 |
if response.status_code == 200:
|
| 66 |
with open(file_path, 'wb') as f:
|