Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,190 +1,148 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoModel, AutoTokenizer
|
| 4 |
-
import spaces
|
| 5 |
import os
|
| 6 |
import tempfile
|
| 7 |
from PIL import Image, ImageDraw
|
| 8 |
-
import re
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
|
|
|
|
|
|
| 12 |
model_name = "deepseek-ai/DeepSeek-OCR"
|
|
|
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 14 |
-
|
| 15 |
model = AutoModel.from_pretrained(
|
| 16 |
model_name,
|
| 17 |
-
# _attn_implementation="flash_attention_2",
|
| 18 |
-
attn_implementation="eager",
|
| 19 |
trust_remote_code=True,
|
| 20 |
-
use_safetensors=True
|
| 21 |
)
|
|
|
|
| 22 |
model = model.eval()
|
| 23 |
-
print("✅ Model loaded successfully
|
| 24 |
|
| 25 |
-
#
|
|
|
|
|
|
|
| 26 |
def find_result_image(path):
|
| 27 |
for filename in os.listdir(path):
|
| 28 |
if "grounding" in filename or "result" in filename:
|
| 29 |
try:
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
print(f"Error opening result image {filename}: {e}")
|
| 34 |
return None
|
| 35 |
|
| 36 |
-
# --- 2. Main Processing Function (UPDATED for multi-bbox drawing) ---
|
| 37 |
-
# @spaces.GPU
|
| 38 |
-
def process_ocr_task(image, model_size, task_type, ref_text):
|
| 39 |
-
"""
|
| 40 |
-
Processes an image with DeepSeek-OCR for all supported tasks.
|
| 41 |
-
Now draws ALL detected bounding boxes for ANY task.
|
| 42 |
-
"""
|
| 43 |
-
if image is None:
|
| 44 |
-
return "Please upload an image first.", None
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
with tempfile.TemporaryDirectory() as output_path:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
elif task_type == "📈 Parse Figure":
|
| 57 |
-
prompt = "<image>\nParse the figure."
|
| 58 |
-
elif task_type == "🔍 Locate Object by Reference":
|
| 59 |
-
if not ref_text or ref_text.strip() == "":
|
| 60 |
-
raise gr.Error("For the 'Locate' task, you must provide the reference text to find!")
|
| 61 |
-
prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
|
| 62 |
-
else:
|
| 63 |
-
prompt = "<image>\nFree OCR."
|
| 64 |
-
|
| 65 |
-
temp_image_path = os.path.join(output_path, "temp_image.png")
|
| 66 |
-
image.save(temp_image_path)
|
| 67 |
-
|
| 68 |
-
# Configure model size... (same as before)
|
| 69 |
-
size_configs = {
|
| 70 |
-
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 71 |
-
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 72 |
-
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 73 |
-
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 74 |
-
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 75 |
-
}
|
| 76 |
-
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
|
| 77 |
-
|
| 78 |
-
print(f"🏃 Running inference with prompt: {prompt}")
|
| 79 |
-
text_result = model_gpu.infer(
|
| 80 |
tokenizer,
|
| 81 |
prompt=prompt,
|
| 82 |
-
image_file=
|
| 83 |
output_path=output_path,
|
| 84 |
base_size=config["base_size"],
|
| 85 |
image_size=config["image_size"],
|
| 86 |
crop_mode=config["crop_mode"],
|
| 87 |
save_results=True,
|
| 88 |
-
|
| 89 |
-
eval_mode=True,
|
| 90 |
)
|
| 91 |
|
| 92 |
-
print(
|
| 93 |
|
| 94 |
-
#
|
| 95 |
-
result_image_pil = None
|
| 96 |
-
|
| 97 |
-
# Define the pattern to find all coordinates like [[280, 15, 696, 997]]
|
| 98 |
pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
|
| 99 |
-
matches = list(pattern.finditer(text_result))
|
| 100 |
|
| 101 |
if matches:
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
result_image_pil = image_with_bboxes
|
| 124 |
-
else:
|
| 125 |
-
# If no coordinates are found in the text, fall back to finding a pre-generated image
|
| 126 |
-
print("⚠️ No bounding box coordinates found in text result. Falling back to search for a result image file.")
|
| 127 |
-
result_image_pil = find_result_image(output_path)
|
| 128 |
-
|
| 129 |
-
return text_result, result_image_pil
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
# --- 3. Build the Gradio Interface (UPDATED) ---
|
| 133 |
with gr.Blocks(title="🐳DeepSeek-OCR🐳", theme=gr.themes.Soft()) as demo:
|
| 134 |
-
gr.Markdown(
|
| 135 |
-
"""
|
| 136 |
-
# 🐳 Full Demo of DeepSeek-OCR 🐳
|
| 137 |
-
**💡 How to use:**
|
| 138 |
-
1. **Upload an image** using the upload box.
|
| 139 |
-
2. Select a **Resolution**. `Gundam` is recommended for most documents.
|
| 140 |
-
3. Choose a **Task Type**:
|
| 141 |
-
- **📝 Free OCR**: Extracts raw text from the image.
|
| 142 |
-
- **📄 Convert to Markdown**: Converts the document into Markdown, preserving structure.
|
| 143 |
-
- **📈 Parse Figure**: Extracts structured data from charts and figures.
|
| 144 |
-
- **🔍 Locate Object by Reference**: Finds a specific object/text.
|
| 145 |
-
4. If this helpful, please give it a like! 🙏 ❤️
|
| 146 |
-
"""
|
| 147 |
-
)
|
| 148 |
|
| 149 |
with gr.Row():
|
| 150 |
with gr.Column(scale=1):
|
| 151 |
-
image_input = gr.Image(type="pil", label="
|
| 152 |
-
model_size = gr.Dropdown(
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
with gr.Column(scale=2):
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
# --- UPDATED Example Images and Tasks ---
|
| 169 |
-
gr.Examples(
|
| 170 |
-
examples=[
|
| 171 |
-
["doc_markdown.png", "Gundam (Recommended)", "📄 Convert to Markdown", ""],
|
| 172 |
-
["chart.png", "Gundam (Recommended)", "📈 Parse Figure", ""],
|
| 173 |
-
["teacher.jpg", "Base", "🔍 Locate Object by Reference", "the teacher"],
|
| 174 |
-
["math_locate.jpg", "Small", "🔍 Locate Object by Reference", "20-10"],
|
| 175 |
-
["receipt.jpg", "Base", "📝 Free OCR", ""],
|
| 176 |
-
],
|
| 177 |
-
inputs=[image_input, model_size, task_type, ref_text_input],
|
| 178 |
-
outputs=[output_text, output_image],
|
| 179 |
-
fn=process_ocr_task,
|
| 180 |
-
cache_examples=False, # Disable caching to ensure examples run every time
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
# --- 4. Launch the App ---
|
| 184 |
if __name__ == "__main__":
|
| 185 |
-
|
| 186 |
-
os.makedirs("examples")
|
| 187 |
-
# Make sure to have the correct image files in your "examples" folder
|
| 188 |
-
# e.g., doc_markdown.png, chart.png, teacher.jpg, math_locate.jpg, receipt.jpg
|
| 189 |
-
|
| 190 |
-
demo.queue(max_size=20).launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoModel, AutoTokenizer
|
|
|
|
| 4 |
import os
|
| 5 |
import tempfile
|
| 6 |
from PIL import Image, ImageDraw
|
| 7 |
+
import re
|
| 8 |
|
| 9 |
+
# -----------------------------------------
|
| 10 |
+
# 1. Load model ONCE at startup (CPU)
|
| 11 |
+
# -----------------------------------------
|
| 12 |
+
print("🔄 Loading model and tokenizer...")
|
| 13 |
model_name = "deepseek-ai/DeepSeek-OCR"
|
| 14 |
+
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 16 |
+
|
| 17 |
model = AutoModel.from_pretrained(
|
| 18 |
model_name,
|
|
|
|
|
|
|
| 19 |
trust_remote_code=True,
|
| 20 |
+
use_safetensors=True
|
| 21 |
)
|
| 22 |
+
|
| 23 |
model = model.eval()
|
| 24 |
+
print("✅ Model loaded successfully (CPU mode)!")
|
| 25 |
|
| 26 |
+
# -----------------------------------------
|
| 27 |
+
# Helper: find generated result images
|
| 28 |
+
# -----------------------------------------
|
| 29 |
def find_result_image(path):
|
| 30 |
for filename in os.listdir(path):
|
| 31 |
if "grounding" in filename or "result" in filename:
|
| 32 |
try:
|
| 33 |
+
return Image.open(os.path.join(path, filename))
|
| 34 |
+
except:
|
| 35 |
+
continue
|
|
|
|
| 36 |
return None
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
# -----------------------------------------
|
| 40 |
+
# 2. OCR main function
|
| 41 |
+
# -----------------------------------------
|
| 42 |
+
def process_ocr_task(image, model_size, task_type, ref_text):
|
| 43 |
|
| 44 |
+
if image is None:
|
| 45 |
+
return "Please upload image first.", None
|
| 46 |
+
|
| 47 |
+
print("⚙️ Running OCR (CPU mode)...")
|
| 48 |
+
|
| 49 |
+
# Create prompt
|
| 50 |
+
if task_type == "📝 Free OCR":
|
| 51 |
+
prompt = "<image>\nFree OCR."
|
| 52 |
+
elif task_type == "📄 Convert to Markdown":
|
| 53 |
+
prompt = "<image>\n<|grounding|>Convert document to markdown."
|
| 54 |
+
elif task_type == "📈 Parse Figure":
|
| 55 |
+
prompt = "<image>\nParse the figure."
|
| 56 |
+
elif task_type == "🔍 Locate Object by Reference":
|
| 57 |
+
if not ref_text.strip():
|
| 58 |
+
raise gr.Error("Reference text required!")
|
| 59 |
+
prompt = f"<image>\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image."
|
| 60 |
+
else:
|
| 61 |
+
prompt = "<image>\nFree OCR."
|
| 62 |
+
|
| 63 |
+
# Size configs
|
| 64 |
+
size_configs = {
|
| 65 |
+
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 66 |
+
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 67 |
+
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 68 |
+
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 69 |
+
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 70 |
+
}
|
| 71 |
+
config = size_configs[model_size]
|
| 72 |
+
|
| 73 |
+
# Temporary path
|
| 74 |
with tempfile.TemporaryDirectory() as output_path:
|
| 75 |
+
img_path = os.path.join(output_path, "input.png")
|
| 76 |
+
image.save(img_path)
|
| 77 |
+
|
| 78 |
+
# Run model
|
| 79 |
+
text_result = model.infer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
tokenizer,
|
| 81 |
prompt=prompt,
|
| 82 |
+
image_file=img_path,
|
| 83 |
output_path=output_path,
|
| 84 |
base_size=config["base_size"],
|
| 85 |
image_size=config["image_size"],
|
| 86 |
crop_mode=config["crop_mode"],
|
| 87 |
save_results=True,
|
| 88 |
+
eval_mode=True
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
+
print("📜 Output text:", text_result[:200])
|
| 92 |
|
| 93 |
+
# Draw bounding box if exists
|
|
|
|
|
|
|
|
|
|
| 94 |
pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>")
|
| 95 |
+
matches = list(pattern.finditer(text_result))
|
| 96 |
|
| 97 |
if matches:
|
| 98 |
+
result_img = image.copy()
|
| 99 |
+
draw = ImageDraw.Draw(result_img)
|
| 100 |
+
w, h = image.size
|
| 101 |
+
|
| 102 |
+
for m in matches:
|
| 103 |
+
x1n, y1n, x2n, y2n = map(int, m.groups())
|
| 104 |
+
draw.rectangle([
|
| 105 |
+
int(x1n/1000*w),
|
| 106 |
+
int(y1n/1000*h),
|
| 107 |
+
int(x2n/1000*w),
|
| 108 |
+
int(y2n/1000*h),
|
| 109 |
+
], outline="red", width=3)
|
| 110 |
+
|
| 111 |
+
return text_result, result_img
|
| 112 |
+
|
| 113 |
+
return text_result, find_result_image(output_path)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# -----------------------------------------
|
| 117 |
+
# 3. UI Layout
|
| 118 |
+
# -----------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
with gr.Blocks(title="🐳DeepSeek-OCR🐳", theme=gr.themes.Soft()) as demo:
|
| 120 |
+
gr.Markdown("## DeepSeek-OCR Demo - CPU Mode")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
with gr.Row():
|
| 123 |
with gr.Column(scale=1):
|
| 124 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
| 125 |
+
model_size = gr.Dropdown(
|
| 126 |
+
["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"],
|
| 127 |
+
value="Gundam (Recommended)"
|
| 128 |
+
)
|
| 129 |
+
task_type = gr.Dropdown(
|
| 130 |
+
["📝 Free OCR", "📄 Convert to Markdown", "📈 Parse Figure", "🔍 Locate Object by Reference"],
|
| 131 |
+
value="📄 Convert to Markdown"
|
| 132 |
+
)
|
| 133 |
+
ref_text = gr.Textbox(visible=False)
|
| 134 |
+
btn = gr.Button("🚀 Process")
|
| 135 |
|
| 136 |
with gr.Column(scale=2):
|
| 137 |
+
out_text = gr.Textbox(lines=12, show_copy_button=True)
|
| 138 |
+
out_image = gr.Image(type="pil", label="Result")
|
| 139 |
+
|
| 140 |
+
def toggle(t):
|
| 141 |
+
return gr.Textbox(visible=(t == "🔍 Locate Object by Reference"))
|
| 142 |
+
|
| 143 |
+
task_type.change(toggle, task_type, ref_text)
|
| 144 |
+
btn.click(process_ocr_task, [image_input, model_size, task_type, ref_text], [out_text, out_image])
|
| 145 |
+
|
| 146 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
if __name__ == "__main__":
|
| 148 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|