import gradio as gr import torch from transformers import AutoModel, AutoTokenizer import os import tempfile from PIL import Image, ImageDraw import re # --- 1. Load Model and Tokenizer (CPU only) --- print("Loading model and tokenizer on CPU...") model_name = "deepseek-ai/DeepSeek-OCR" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Load model directly to CPU without flash_attention_2 (GPU-only feature) model = AutoModel.from_pretrained( model_name, trust_remote_code=True, use_safetensors=True, torch_dtype=torch.float32 # Use float32 for CPU ) model = model.eval() print("βœ… Model loaded successfully on CPU.") # --- Helper function to find pre-generated result images --- def find_result_image(path): for filename in os.listdir(path): if "grounding" in filename or "result" in filename: try: image_path = os.path.join(path, filename) return Image.open(image_path) except Exception as e: print(f"Error opening result image {filename}: {e}") return None # --- 2. Main Processing Function (CPU version) --- def process_ocr_task(image, model_size, task_type, ref_text): """ Processes an image with DeepSeek-OCR for all supported tasks. CPU-only version without GPU decorators. """ if image is None: return "Please upload an image first.", None print("πŸš€ Processing on CPU...") with tempfile.TemporaryDirectory() as output_path: # Build the prompt if task_type == "πŸ“ Free OCR": prompt = "\nFree OCR." elif task_type == "πŸ“„ Convert to Markdown": prompt = "\n<|grounding|>Convert the document to markdown." elif task_type == "πŸ“ˆ Parse Figure": prompt = "\nParse the figure." elif task_type == "πŸ” Locate Object by Reference": if not ref_text or ref_text.strip() == "": raise gr.Error("For the 'Locate' task, you must provide the reference text to find!") prompt = f"\nLocate <|ref|>{ref_text.strip()}<|/ref|> in the image." else: prompt = "\nFree OCR." temp_image_path = os.path.join(output_path, "temp_image.png") image.save(temp_image_path) # Configure model size size_configs = { "Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False}, "Small": {"base_size": 640, "image_size": 640, "crop_mode": False}, "Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False}, "Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False}, "Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True}, } config = size_configs.get(model_size, size_configs["Gundam (Recommended)"]) print(f"πŸƒ Running inference with prompt: {prompt}") # Run inference on CPU (model is already on CPU) text_result = model.infer( tokenizer, prompt=prompt, image_file=temp_image_path, output_path=output_path, base_size=config["base_size"], image_size=config["image_size"], crop_mode=config["crop_mode"], save_results=True, test_compress=True, eval_mode=True, ) print(f"====\nπŸ“„ Text Result: {text_result}\n====") # Try to find and draw all bounding boxes result_image_pil = None # Pattern to find coordinates like [[280, 15, 696, 997]] pattern = re.compile(r"<\|det\|>\[\[(\d+),\s*(\d+),\s*(\d+),\s*(\d+)\]\]<\|/det\|>") matches = list(pattern.finditer(text_result)) if matches: print(f"βœ… Found {len(matches)} bounding box(es). Drawing on the original image.") # Create a copy of the original image to draw on image_with_bboxes = image.copy() draw = ImageDraw.Draw(image_with_bboxes) w, h = image.size for match in matches: # Extract coordinates as integers coords_norm = [int(c) for c in match.groups()] x1_norm, y1_norm, x2_norm, y2_norm = coords_norm # Scale normalized coordinates to actual image size x1 = int(x1_norm / 1000 * w) y1 = int(y1_norm / 1000 * h) x2 = int(x2_norm / 1000 * w) y2 = int(y2_norm / 1000 * h) # Draw rectangle with red outline draw.rectangle([x1, y1, x2, y2], outline="red", width=3) result_image_pil = image_with_bboxes else: print("⚠️ No bounding box coordinates found. Falling back to search for result image file.") result_image_pil = find_result_image(output_path) return text_result, result_image_pil # --- 3. Build the Gradio Interface --- with gr.Blocks(title="🐳DeepSeek-OCR (CPU)🐳", theme=gr.themes.Soft()) as demo: gr.Markdown( """ # 🐳 DeepSeek-OCR (CPU Version) 🐳 **⚠️ Note: Running on CPU - processing will be slower than GPU version** **πŸ’‘ How to use:** 1. **Upload an image** using the upload box. 2. Select a **Resolution**. Start with `Tiny` or `Small` for faster CPU processing. 3. Choose a **Task Type**: - **πŸ“ Free OCR**: Extracts raw text from the image. - **πŸ“„ Convert to Markdown**: Converts the document into Markdown. - **πŸ“ˆ Parse Figure**: Extracts structured data from charts. - **πŸ” Locate Object by Reference**: Finds a specific object/text. 4. If this helpful, please give it a like! πŸ™ ❀️ """ ) with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(type="pil", label="πŸ–ΌοΈ Upload Image", sources=["upload", "clipboard"]) model_size = gr.Dropdown( choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"], value="Small", # Default to Small for faster CPU processing label="βš™οΈ Resolution Size" ) task_type = gr.Dropdown( choices=["πŸ“ Free OCR", "πŸ“„ Convert to Markdown", "πŸ“ˆ Parse Figure", "πŸ” Locate Object by Reference"], value="πŸ“„ Convert to Markdown", label="πŸš€ Task Type" ) ref_text_input = gr.Textbox( label="πŸ“ Reference Text (for Locate task)", placeholder="e.g., the teacher, 20-10, a red car...", visible=False ) submit_btn = gr.Button("Process Image", variant="primary") with gr.Column(scale=2): output_text = gr.Textbox(label="πŸ“„ Text Result", lines=15, show_copy_button=True) output_image = gr.Image(label="πŸ–ΌοΈ Image Result (if any)", type="pil") # UI Interaction Logic def toggle_ref_text_visibility(task): return gr.Textbox(visible=True) if task == "πŸ” Locate Object by Reference" else gr.Textbox(visible=False) task_type.change(fn=toggle_ref_text_visibility, inputs=task_type, outputs=ref_text_input) submit_btn.click( fn=process_ocr_task, inputs=[image_input, model_size, task_type, ref_text_input], outputs=[output_text, output_image] ) # Examples gr.Examples( examples=[ ["doc_markdown.png", "Small", "πŸ“„ Convert to Markdown", ""], ["chart.png", "Small", "πŸ“ˆ Parse Figure", ""], ["teacher.jpg", "Tiny", "πŸ” Locate Object by Reference", "the teacher"], ["math_locate.jpg", "Tiny", "πŸ” Locate Object by Reference", "20-10"], ["receipt.jpg", "Small", "πŸ“ Free OCR", ""], ], inputs=[image_input, model_size, task_type, ref_text_input], outputs=[output_text, output_image], fn=process_ocr_task, cache_examples=False, ) # --- 4. Launch the App --- if __name__ == "__main__": if not os.path.exists("examples"): os.makedirs("examples") demo.queue(max_size=5).launch(share=True) # Reduced queue size for CPU