Spaces:
Running
Running
File size: 5,544 Bytes
5d12635 5e7604a 71665e5 5d12635 5e7604a e720905 5e7604a 71665e5 5e7604a 8bac750 5e7604a 8bac750 5e7604a 71665e5 5e7604a 5d12635 8bac750 5e7604a 8bac750 5e7604a 8bac750 71665e5 7baf8ba 8bac750 5d12635 8bac750 7baf8ba 8bac750 7baf8ba 8bac750 71665e5 8bac750 3b1904c 7baf8ba 4927db5 3b1904c 5e7604a 71665e5 8bac750 71665e5 8bac750 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
# DeepBoner Context
## Project Overview
**DeepBoner** is an AI-native Sexual Health Research Agent.
**Goal:** To accelerate research into sexual health, wellness, and reproductive medicine by intelligently searching biomedical literature (PubMed, ClinicalTrials.gov, Europe PMC), evaluating evidence, and synthesizing findings.
**Architecture:**
The project follows a **Vertical Slice Architecture** (Search -> Judge -> Orchestrator) and adheres to **Strict TDD** (Test-Driven Development).
**Current Status:** Phases 1-14 COMPLETE (Foundation through Demo Submission).
## Tech Stack & Tooling
- **Language:** Python 3.11 (Pinned)
- **Package Manager:** `uv` (Rust-based, extremely fast)
- **Frameworks:** `pydantic`, `pydantic-ai`, `httpx`, `gradio[mcp]`
- **Vector DB:** `chromadb` with `sentence-transformers` for semantic search
- **Code Execution:** `modal` for secure sandboxed Python execution
- **Testing:** `pytest`, `pytest-asyncio`, `respx` (for mocking)
- **Quality:** `ruff` (linting/formatting), `mypy` (strict type checking), `pre-commit`
## Building & Running
| Command | Description |
| :--- | :--- |
| `make install` | Install dependencies and pre-commit hooks. |
| `make test` | Run unit tests. |
| `make lint` | Run Ruff linter. |
| `make format` | Run Ruff formatter. |
| `make typecheck` | Run Mypy static type checker. |
| `make check` | **The Golden Gate:** Runs lint, typecheck, and test. Must pass before committing. |
| `make clean` | Clean up cache and artifacts. |
## Directory Structure
- `src/`: Source code
- `utils/`: Shared utilities (`config.py`, `exceptions.py`, `models.py`)
- `tools/`: Search tools (`pubmed.py`, `clinicaltrials.py`, `europepmc.py`, `code_execution.py`)
- `services/`: Services (`embeddings.py`, `statistical_analyzer.py`)
- `agents/`: Magentic multi-agent mode agents
- `agent_factory/`: Agent definitions (judges, prompts)
- `mcp_tools.py`: MCP tool wrappers for Claude Desktop integration
- `app.py`: Gradio UI with MCP server
- `tests/`: Test suite
- `unit/`: Isolated unit tests (Mocked)
- `integration/`: Real API tests (Marked as slow/integration)
- `docs/`: Documentation and Implementation Specs
- `examples/`: Working demos for each phase
## Key Components
- `src/orchestrators/` - Orchestrator package (simple, advanced, langgraph modes)
- `simple.py` - Main search-and-judge loop
- `advanced.py` - Multi-agent Magentic mode
- `langgraph_orchestrator.py` - LangGraph-based workflow
- `src/tools/pubmed.py` - PubMed E-utilities search
- `src/tools/clinicaltrials.py` - ClinicalTrials.gov API
- `src/tools/europepmc.py` - Europe PMC search
- `src/tools/code_execution.py` - Modal sandbox execution
- `src/tools/search_handler.py` - Scatter-gather orchestration
- `src/services/embeddings.py` - Local embeddings (sentence-transformers, in-memory)
- `src/services/llamaindex_rag.py` - Premium embeddings (OpenAI, persistent ChromaDB)
- `src/services/embedding_protocol.py` - Protocol interface for embedding services
- `src/services/research_memory.py` - Shared memory layer for research state
- `src/services/statistical_analyzer.py` - Statistical analysis via Modal
- `src/utils/service_loader.py` - Tiered service selection (free vs premium)
- `src/mcp_tools.py` - MCP tool wrappers
- `src/app.py` - Gradio UI (HuggingFace Spaces) with MCP server
## Configuration
Settings via pydantic-settings from `.env`:
- `LLM_PROVIDER`: "openai" or "anthropic"
- `OPENAI_API_KEY` / `ANTHROPIC_API_KEY`: LLM keys
- `NCBI_API_KEY`: Optional, for higher PubMed rate limits
- `MODAL_TOKEN_ID` / `MODAL_TOKEN_SECRET`: For Modal sandbox (optional)
- `MAX_ITERATIONS`: 1-50, default 10
- `LOG_LEVEL`: DEBUG, INFO, WARNING, ERROR
## LLM Model Defaults (November 2025)
Given the rapid advancements, as of November 29, 2025, the DeepBoner project uses the following default LLM models in its configuration (`src/utils/config.py`):
- **OpenAI:** `gpt-5`
- Current flagship model (November 2025). Requires Tier 5 access.
- **Anthropic:** `claude-sonnet-4-5-20250929`
- This is the mid-range Claude 4.5 model, released on September 29, 2025.
- The flagship `Claude Opus 4.5` (released November 24, 2025) is also available and can be configured by advanced users for enhanced capabilities.
- **HuggingFace (Free Tier):** `meta-llama/Llama-3.1-70B-Instruct`
- This remains the default for the free tier, subject to quota limits.
It is crucial to keep these defaults updated as the LLM landscape evolves.
## Development Conventions
1. **Strict TDD:** Write failing tests in `tests/unit/` *before* implementing logic in `src/`.
2. **Type Safety:** All code must pass `mypy --strict`. Use Pydantic models for data exchange.
3. **Linting:** Zero tolerance for Ruff errors.
4. **Mocking:** Use `respx` or `unittest.mock` for all external API calls in unit tests.
5. **Vertical Slices:** Implement features end-to-end rather than layer-by-layer.
## Git Workflow
- `main`: Production-ready (GitHub)
- `dev`: Development integration (GitHub)
- Remote `origin`: GitHub (source of truth for PRs/code review)
- Remote `huggingface-upstream`: HuggingFace Spaces (deployment target)
**HuggingFace Spaces Collaboration:**
- Each contributor should use their own dev branch: `yourname-dev` (e.g., `vcms-dev`, `mario-dev`)
- **DO NOT push directly to `main` or `dev` on HuggingFace** - these can be overwritten easily
- GitHub is the source of truth; HuggingFace is for deployment/demo
- Consider using git hooks to prevent accidental pushes to protected branches
|