File size: 13,941 Bytes
f4d0231 49579c7 7b57542 49579c7 f4d0231 f82669f 28c3793 f82669f 7b57542 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
"""Response formatting utilities"""
from typing import Any, Dict, List, Optional, Tuple
import plotly.graph_objects as go
import plotly.express as px
def format_card_display(card_data: Dict) -> str:
"""Format card recommendation for display"""
card_name = card_data.get("card_name", "Unknown Card")
reward_rate = card_data.get("reward_rate", 0)
reward_amount = card_data.get("reward_amount", 0)
category = card_data.get("category", "General")
reasoning = card_data.get("reasoning", "")
return f"""
### ๐ณ {card_name}
**Reward Rate:** {reward_rate}x points
**Reward Amount:** ${reward_amount:.2f}
**Category:** {category}
**Why:** {reasoning}
"""
def format_full_recommendation(response: Dict) -> str:
"""Format complete recommendation response"""
if response.get("error"):
return f"โ **Error:** {response.get('message', 'Unknown error')}"
# Header
output = f"""
# ๐ฏ Recommendation for {response.get('merchant', 'Unknown')}
**Amount:** ${response.get('amount_usd', 0):.2f}
**Date:** {response.get('transaction_date', 'N/A')}
**User:** {response.get('user_id', 'N/A')}
---
## ๐ Best Card to Use
"""
# Recommended card
recommended = response.get("recommended_card", {})
output += format_card_display(recommended)
# RAG Insights
rag_insights = response.get("rag_insights")
if rag_insights:
output += f"""
---
## ๐ Card Benefits
{rag_insights.get('benefits', 'No additional information available.')}
"""
if rag_insights.get('tips'):
output += f"""
๐ก **Pro Tip:** {rag_insights.get('tips')}
"""
# Forecast Warning
forecast = response.get("forecast_warning")
if forecast:
risk_level = forecast.get("risk_level", "low")
message = forecast.get("message", "")
if risk_level == "high":
emoji = "๐จ"
elif risk_level == "medium":
emoji = "โ ๏ธ"
else:
emoji = "โ
"
output += f"""
---
## {emoji} Spending Status
{message}
**Current Spend:** ${forecast.get('current_spend', 0):.2f}
**Spending Cap:** ${forecast.get('cap', 0):.2f}
**Projected Spend:** ${forecast.get('projected_spend', 0):.2f}
"""
# Alternative cards
alternatives = response.get("alternative_cards", [])
if alternatives:
output += "\n---\n\n## ๐ Alternative Cards\n\n"
for i, alt in enumerate(alternatives[:2], 1):
output += f"### Option {i}\n"
output += format_card_display(alt)
# Metadata
services = response.get("services_used", [])
time_ms = response.get("orchestration_time_ms", 0)
output += f"""
---
**Services Used:** {', '.join(services)}
**Response Time:** {time_ms:.0f}ms
"""
return output
def format_comparison_table(cards: list) -> str:
"""Format card comparison as markdown table"""
if not cards:
return "No cards to compare."
table = """
| Card | Reward Rate | Reward Amount | Category |
|------|-------------|---------------|----------|
"""
for card in cards:
name = card.get("card_name", "Unknown")
rate = card.get("reward_rate", 0)
amount = card.get("reward_amount", 0)
category = card.get("category", "N/A")
table += f"| {name} | {rate}x | ${amount:.2f} | {category} |\n"
return table
# utils/formatters.py
def format_analytics_metrics(analytics: Dict[str, Any]) -> tuple:
"""
Format analytics data for display
Returns:
Tuple of (metrics_html, table_md, insights_md, forecast_md)
"""
# Format metric cards
metrics_html = f"""
<div style="display: flex; gap: 10px; flex-wrap: wrap;">
<div class="metric-card" style="flex: 1; min-width: 200px;">
<h2>${analytics['annual_savings']}</h2>
<p>๐ฐ Potential Annual Savings</p>
</div>
<div class="metric-card metric-card-green" style="flex: 1; min-width: 200px;">
<h2>{analytics['rate_increase']}%</h2>
<p>๐ Rewards Rate Increase</p>
</div>
<div class="metric-card metric-card-orange" style="flex: 1; min-width: 200px;">
<h2>{analytics['optimized_transactions']}</h2>
<p>โ
Optimized Transactions</p>
</div>
<div class="metric-card metric-card-blue" style="flex: 1; min-width: 200px;">
<h2>{analytics['optimization_score']}/100</h2>
<p>โญ Optimization Score</p>
</div>
</div>
"""
# Format spending breakdown table
table_rows = []
for cat in analytics['category_breakdown']:
table_rows.append(
f"| {cat['category']} | ${cat['monthly_spend']:.2f} | {cat['best_card']} | "
f"${cat['rewards']:.2f} | {cat['rate']} |"
)
table_md = f"""
| Category | Monthly Spend | Best Card | Rewards | Rate |
|----------|---------------|-----------|---------|------|
{chr(10).join(table_rows)}
| **Total** | **${analytics['total_monthly_spend']:.2f}** | - | **${analytics['total_monthly_rewards']:.2f}** | **{analytics['average_rate']}%** |
"""
# Format insights
top_cats = "\n".join([
f"{i+1}. {cat['name']}: ${cat['amount']:.2f} ({cat['change']})"
for i, cat in enumerate(analytics['top_categories'])
])
insights_md = f"""
**๐ฅ Top Spending Categories:**
{top_cats}
**๐ก Optimization Opportunities:**
- โ
You're using optimal cards {analytics['optimization_score']}% of the time
- ๐ฏ Switch to Chase Freedom for Q4 5% grocery bonus
- โ ๏ธ Amex Gold dining cap approaching ($2,000 limit)
- ๐ณ Consider applying for Citi Custom Cash
**๐ Best Performing Card:**
{analytics['category_breakdown'][0]['best_card']} - ${analytics['category_breakdown'][0]['rewards']:.2f} rewards earned
**๐ Year-to-Date:**
- Total Rewards: ${analytics['ytd_rewards']:.2f}
- Potential if optimized: ${analytics['ytd_potential']:.2f}
- **Money left on table: ${analytics['money_left']:.2f}**
"""
# Format forecast
forecast = analytics['forecast']
recommendations = "\n".join([f"{i+1}. {rec}" for i, rec in enumerate(analytics['recommendations'])])
forecast_md = f"""
### ๐ฎ Next Month Forecast
Based on your spending patterns:
- **Predicted Spend:** ${forecast['next_month_spend']:.2f}
- **Predicted Rewards:** ${forecast['next_month_rewards']:.2f}
- **Cards to Watch:** {', '.join(forecast['cards_to_watch'])}
**Recommendations:**
{recommendations}
"""
return metrics_html, table_md, insights_md, forecast_md
def create_spending_chart(analytics: Dict[str, Any]) -> go.Figure:
"""
Create a bar chart showing spending by category
Args:
analytics: Analytics data dictionary
Returns:
Plotly figure object
"""
categories = [cat['category'] for cat in analytics['category_breakdown']]
spending = [cat['monthly_spend'] for cat in analytics['category_breakdown']]
rewards = [cat['rewards'] for cat in analytics['category_breakdown']]
fig = go.Figure()
# Add spending bars
fig.add_trace(go.Bar(
name='Monthly Spend',
x=categories,
y=spending,
marker_color='rgb(102, 126, 234)',
text=[f'${s:.0f}' for s in spending],
textposition='outside',
))
# Add rewards bars
fig.add_trace(go.Bar(
name='Rewards Earned',
x=categories,
y=rewards,
marker_color='rgb(56, 239, 125)',
text=[f'${r:.2f}' for r in rewards],
textposition='outside',
))
fig.update_layout(
title='๐ฐ Spending vs Rewards by Category',
xaxis_title='Category',
yaxis_title='Amount ($)',
barmode='group',
height=400,
template='plotly_white',
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
return fig
def create_rewards_pie_chart(analytics: Dict[str, Any]) -> go.Figure:
"""
Create a pie chart showing rewards distribution by category
Args:
analytics: Analytics data dictionary
Returns:
Plotly figure object
"""
categories = [cat['category'] for cat in analytics['category_breakdown']]
rewards = [cat['rewards'] for cat in analytics['category_breakdown']]
fig = go.Figure(data=[go.Pie(
labels=categories,
values=rewards,
hole=0.4, # Donut chart
marker=dict(
colors=['#667eea', '#764ba2', '#f093fb', '#f5576c', '#4facfe', '#00f2fe']
),
textinfo='label+percent',
textposition='outside',
hovertemplate='<b>%{label}</b><br>Rewards: $%{value:.2f}<br>%{percent}<extra></extra>'
)])
fig.update_layout(
title='๐ฏ Rewards Distribution by Category',
height=400,
template='plotly_white',
showlegend=True,
legend=dict(
orientation="v",
yanchor="middle",
y=0.5,
xanchor="left",
x=1.05
)
)
return fig
def create_optimization_gauge(analytics: Dict[str, Any]) -> go.Figure:
"""
Create a gauge chart showing optimization score
Args:
analytics: Analytics data dictionary
Returns:
Plotly figure object
"""
score = analytics['optimization_score']
fig = go.Figure(go.Indicator(
mode="gauge+number+delta",
value=score,
domain={'x': [0, 1], 'y': [0, 1]},
title={'text': "โญ Optimization Score", 'font': {'size': 24}},
delta={'reference': 80, 'increasing': {'color': "green"}},
gauge={
'axis': {'range': [None, 100], 'tickwidth': 1, 'tickcolor': "darkblue"},
'bar': {'color': "darkblue"},
'bgcolor': "white",
'borderwidth': 2,
'bordercolor': "gray",
'steps': [
{'range': [0, 50], 'color': '#ffcccb'},
{'range': [50, 75], 'color': '#ffffcc'},
{'range': [75, 100], 'color': '#ccffcc'}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': 90
}
}
))
fig.update_layout(
height=300,
template='plotly_white',
margin=dict(l=20, r=20, t=60, b=20)
)
return fig
def create_trend_line_chart(analytics: Dict[str, Any]) -> go.Figure:
"""
Create a line chart showing spending trends (mock data for demo)
Args:
analytics: Analytics data dictionary
Returns:
Plotly figure object
"""
import random
# Generate mock monthly data
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
# Base spending with some variance
base_spend = analytics['total_monthly_spend']
spending_data = [base_spend * (0.8 + random.random() * 0.4) for _ in months]
# Calculate rewards based on average rate
avg_rate = analytics['average_rate'] / 100
rewards_data = [spend * avg_rate for spend in spending_data]
fig = go.Figure()
# Add spending line
fig.add_trace(go.Scatter(
x=months,
y=spending_data,
mode='lines+markers',
name='Monthly Spending',
line=dict(color='rgb(102, 126, 234)', width=3),
marker=dict(size=8),
hovertemplate='<b>%{x}</b><br>Spending: $%{y:.2f}<extra></extra>'
))
# Add rewards line
fig.add_trace(go.Scatter(
x=months,
y=rewards_data,
mode='lines+markers',
name='Rewards Earned',
line=dict(color='rgb(56, 239, 125)', width=3),
marker=dict(size=8),
hovertemplate='<b>%{x}</b><br>Rewards: $%{y:.2f}<extra></extra>'
))
fig.update_layout(
title='๐ 12-Month Spending & Rewards Trend',
xaxis_title='Month',
yaxis_title='Amount ($)',
height=400,
template='plotly_white',
hovermode='x unified',
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
return fig
def create_card_performance_chart(analytics: Dict[str, Any]) -> go.Figure:
"""
Create a horizontal bar chart showing card performance
Args:
analytics: Analytics data dictionary
Returns:
Plotly figure object
"""
# Aggregate rewards by card
card_rewards = {}
for cat in analytics['category_breakdown']:
card = cat['best_card']
reward = cat['rewards']
if card in card_rewards:
card_rewards[card] += reward
else:
card_rewards[card] = reward
# Sort by rewards
sorted_cards = sorted(card_rewards.items(), key=lambda x: x[0], reverse=True)
cards = [card for card, _ in sorted_cards]
rewards = [reward for _, reward in sorted_cards]
fig = go.Figure(go.Bar(
x=rewards,
y=cards,
orientation='h',
marker=dict(
color=rewards,
colorscale='Viridis',
showscale=True,
colorbar=dict(title="Rewards ($)")
),
text=[f'${r:.2f}' for r in rewards],
textposition='outside',
hovertemplate='<b>%{y}</b><br>Total Rewards: $%{x:.2f}<extra></extra>'
))
fig.update_layout(
title='๐ Card Performance Ranking',
xaxis_title='Total Rewards Earned ($)',
yaxis_title='Credit Card',
height=400,
template='plotly_white',
margin=dict(l=150)
)
return fig |