File size: 12,107 Bytes
112cabd
 
 
f4d0231
112cabd
ccb76e6
1363452
ccb76e6
112cabd
ccb76e6
f4d0231
112cabd
f4d0231
112cabd
f4d0231
112cabd
 
 
 
 
 
 
 
 
f4d0231
112cabd
f4d0231
 
 
112cabd
 
 
f4d0231
112cabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11f1e55
 
 
112cabd
 
 
 
 
 
11f1e55
 
112cabd
 
11f1e55
f4d0231
112cabd
 
f4d0231
11f1e55
 
 
112cabd
11f1e55
 
 
112cabd
11f1e55
 
 
112cabd
11f1e55
112cabd
11f1e55
112cabd
11f1e55
 
f4d0231
112cabd
1eec6c9
112cabd
1eec6c9
 
 
 
 
112cabd
1eec6c9
112cabd
11f1e55
 
 
 
1eec6c9
112cabd
 
 
 
 
 
 
 
 
 
 
 
 
1eec6c9
 
112cabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eec6c9
112cabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eec6c9
112cabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
889e5a0
 
112cabd
889e5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112cabd
 
 
 
889e5a0
112cabd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
"""
API Client for RewardPilot Orchestrator Service
"""

import requests
import logging
from typing import Dict, Any, Optional, Tuple, List

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class RewardPilotClient:
    """Client for interacting with RewardPilot microservices"""
    
    def __init__(self, orchestrator_url: str = "http://localhost:8000"):
        """
        Initialize API client
        
        Args:
            orchestrator_url: Base URL for orchestrator service
        """
        self.orchestrator_url = orchestrator_url.rstrip('/')
        self.timeout = 10  # seconds
    
    def get_recommendation(
        self,
        user_id: str,
        merchant: str,
        category: str,
        amount: float,
        mcc: Optional[str] = None
    ) -> Dict:
        """
        Get card recommendation for a transaction
        
        Args:
            user_id: User identifier
            merchant: Merchant name
            category: Transaction category (e.g., "Groceries", "Dining")
            amount: Transaction amount in USD
            mcc: Optional Merchant Category Code
            
        Returns:
            Dictionary with recommendation data
        """
        
        # Map category to MCC if not provided
        if not mcc:
            mcc = self._category_to_mcc(category)
        
        payload = {
            "user_id": user_id,
            "merchant": merchant,
            "category": category,
            "mcc": mcc,
            "amount_usd": amount
        }
        
        try:
            logger.info(f"πŸ”— Calling: {self.orchestrator_url}/recommend")
            logger.info(f"πŸ“¦ Payload: {payload}")
            
            response = requests.post(
                f"{self.orchestrator_url}/recommend",
                json=payload,
                timeout=self.timeout
            )
            
            logger.info(f"πŸ“‘ Response status: {response.status_code}")
            
            if response.status_code == 200:
                data = response.json()
                logger.info(f"βœ… Got recommendation for {merchant}")
                return {
                    "success": True,
                    "data": data
                }
            elif response.status_code == 404:
                logger.warning(f"⚠️ Endpoint not found (404) - using mock data")
                return self._get_mock_recommendation(user_id, merchant, category, amount)
            else:
                logger.error(f"❌ API error: {response.status_code} - using mock data")
                return self._get_mock_recommendation(user_id, merchant, category, amount)
        
        except requests.exceptions.Timeout:
            logger.error("❌ Request timeout - using mock data")
            return self._get_mock_recommendation(user_id, merchant, category, amount)
        
        except requests.exceptions.ConnectionError:
            logger.error("❌ Connection error - using mock data")
            return self._get_mock_recommendation(user_id, merchant, category, amount)
        
        except Exception as e:
            logger.error(f"❌ Unexpected error: {e} - using mock data")
            return self._get_mock_recommendation(user_id, merchant, category, amount)
    
    def get_user_analytics(self, user_id: str) -> Dict:
        """
        Get analytics for a user
        
        Args:
            user_id: User identifier
            
        Returns:
            Dictionary with analytics data
        """
        
        logger.info(f"πŸ“Š Getting analytics for {user_id} (using mock data)")
        
        # Always use mock data since orchestrator doesn't have analytics endpoint
        return self._get_mock_analytics(user_id)
    
    def compare_cards(self, card_ids: List[str]) -> Dict:
        """
        Compare multiple credit cards
        
        Args:
            card_ids: List of card identifiers
            
        Returns:
            Dictionary with comparison data
        """
        
        payload = {
            "card_ids": card_ids
        }
        
        try:
            response = requests.post(
                f"{self.orchestrator_url}/compare",
                json=payload,
                timeout=self.timeout
            )
            
            if response.status_code == 200:
                return {
                    "success": True,
                    "data": response.json()
                }
            else:
                return {
                    "success": False,
                    "error": f"API returned status {response.status_code}"
                }
                
        except Exception as e:
            logger.error(f"❌ Error comparing cards: {e}")
            return {
                "success": False,
                "error": str(e)
            }
    
    def _category_to_mcc(self, category: str) -> str:
        """Map category name to MCC code"""
        
        category_map = {
            "Groceries": "5411",
            "Dining": "5812",
            "Travel": "4511",
            "Gas": "5541",
            "Online Shopping": "5999",
            "Entertainment": "7832",
            "Pharmacy": "5912",
            "Department Store": "5311",
            "Home Improvement": "5211",
            "Utilities": "4900"
        }
        
        return category_map.get(category, "0000")
    
    def _get_mock_recommendation(
        self,
        user_id: str,
        merchant: str,
        category: str,
        amount: float
    ) -> Dict:
        """
        Generate mock recommendation for demo/development
        
        This is used when the orchestrator service is unavailable
        """
        
        # Simple rule-based mock logic
        card_rules = {
            "Groceries": {
                "card": "Amex Gold",
                "rate": "4x points",
                "multiplier": 4.0
            },
            "Dining": {
                "card": "Capital One Savor",
                "rate": "4% cashback",
                "multiplier": 4.0
            },
            "Travel": {
                "card": "Chase Sapphire Reserve",
                "rate": "3x points",
                "multiplier": 3.0
            },
            "Gas": {
                "card": "Costco Visa",
                "rate": "4% cashback",
                "multiplier": 4.0
            },
            "Online Shopping": {
                "card": "Amazon Prime Card",
                "rate": "5% cashback",
                "multiplier": 5.0
            }
        }
        
        rule = card_rules.get(category, {
            "card": "Citi Double Cash",
            "rate": "2% cashback",
            "multiplier": 2.0
        })
        
        rewards_earned = amount * (rule["multiplier"] / 100)
        annual_potential = rewards_earned * 12  # Rough estimate
        
        logger.warning(f"⚠️ Using mock data for {merchant}")
        
        return {
            "success": True,
            "data": {
                "recommended_card": rule["card"],
                "rewards_earned": round(rewards_earned, 2),
                "rewards_rate": rule["rate"],
                "merchant": merchant,
                "category": category,
                "amount": amount,
                "annual_potential": round(annual_potential, 2),
                "optimization_score": 85,
                "reasoning": f"Best card for {category.lower()} purchases",
                "warnings": [],
                "alternatives": [
                    {
                        "card": "Citi Double Cash",
                        "rewards": round(amount * 0.02, 2),
                        "rate": "2% cashback"
                    }
                ],
                "mock_data": True  # Flag to indicate this is mock data
            }
        }
    
    def _get_mock_analytics(self, user_id: str) -> Dict[str, Any]:
        """Generate user-specific mock analytics"""
        
        # Different data for different users
        user_profiles = {
            "u_alice": {
                "user_id": "u_alice",
                "total_spending": 4250.75,
                "total_rewards": 187.50,
                "optimization_score": 92,
                "optimized_count": 58,
                "potential_savings": 125.00,
                "spending_by_category": {
                    "Groceries": 1200.00,
                    "Restaurants": 850.50,
                    "Gas Stations": 420.25,
                    "Online Shopping": 1200.00,
                    "Entertainment": 580.00
                },
                "rewards_by_card": {
                    "Amex Gold": 95.50,
                    "Chase Sapphire Reserve": 62.00,
                    "Citi Double Cash": 30.00
                },
                "monthly_trends": [
                    {"month": "Aug", "spending": 1200, "rewards": 52},
                    {"month": "Sep", "spending": 1450, "rewards": 63},
                    {"month": "Oct", "spending": 1600, "rewards": 72}
                ]
            },
            "u_bob": {
                "user_id": "u_bob",
                "total_spending": 3150.25,
                "total_rewards": 142.30,
                "optimization_score": 78,
                "optimized_count": 42,
                "potential_savings": 285.50,
                "spending_by_category": {
                    "Groceries": 800.00,
                    "Restaurants": 1200.00,
                    "Gas Stations": 350.00,
                    "Airlines": 600.00,
                    "Entertainment": 200.25
                },
                "rewards_by_card": {
                    "Chase Sapphire Reserve": 85.00,
                    "Amex Gold": 42.30,
                    "Capital One Venture": 15.00
                },
                "monthly_trends": [
                    {"month": "Aug", "spending": 950, "rewards": 38},
                    {"month": "Sep", "spending": 1100, "rewards": 52},
                    {"month": "Oct", "spending": 1100, "rewards": 52}
                ]
            },
            "u_charlie": {
                "user_id": "u_charlie",
                "total_spending": 5420.80,
                "total_rewards": 245.60,
                "optimization_score": 85,
                "optimized_count": 67,
                "potential_savings": 180.00,
                "spending_by_category": {
                    "Online Shopping": 2000.00,
                    "Groceries": 1100.00,
                    "Restaurants": 950.00,
                    "Gas Stations": 520.80,
                    "Hotels": 850.00
                },
                "rewards_by_card": {
                    "Amex Gold": 125.00,
                    "Chase Sapphire Reserve": 95.60,
                    "Citi Double Cash": 25.00
                },
                "monthly_trends": [
                    {"month": "Aug", "spending": 1650, "rewards": 75},
                    {"month": "Sep", "spending": 1850, "rewards": 82},
                    {"month": "Oct", "spending": 1920, "rewards": 88}
                ]
            }
        }
        
        # Get user-specific data or default to alice
        user_data = user_profiles.get(user_id, user_profiles["u_alice"])
        
        return {
            "success": True,
            "data": {
                **user_data,
                "mock_data": True
            }
        }
    
    def health_check(self) -> bool:
        """
        Check if orchestrator service is available
        
        Returns:
            True if service is healthy, False otherwise
        """
        try:
            response = requests.get(
                f"{self.orchestrator_url}/health",
                timeout=5
            )
            return response.status_code == 200
        except:
            return False


# Convenience function
def create_client(orchestrator_url: str = "http://localhost:8000") -> RewardPilotClient:
    """Create and return a RewardPilotClient instance"""
    return RewardPilotClient(orchestrator_url)