Create llamaindex_setup.md
Browse files- docs/llamaindex_setup.md +704 -0
docs/llamaindex_setup.md
ADDED
|
@@ -0,0 +1,704 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
```markdown
|
| 2 |
+
# LlamaIndex RAG Setup Guide
|
| 3 |
+
|
| 4 |
+
## Overview
|
| 5 |
+
|
| 6 |
+
RewardPilot uses LlamaIndex to build a semantic search system over 50+ credit card benefit documents. This enables the agent to answer complex questions like "Which card has the best travel insurance?" or "Does Amex Gold work at Costco?"
|
| 7 |
+
|
| 8 |
+
## Why LlamaIndex + RAG?
|
| 9 |
+
|
| 10 |
+
| Problem | Traditional Approach | RAG Solution |
|
| 11 |
+
|---------|---------------------|--------------|
|
| 12 |
+
| **Card benefits change** | Hardcode rules → outdated | Dynamic document retrieval |
|
| 13 |
+
| **Complex questions** | Manual lookup | Semantic search |
|
| 14 |
+
| **50+ cards** | Impossible to memorize | Vector similarity |
|
| 15 |
+
| **Nuanced rules** | Prone to errors | Context-aware answers |
|
| 16 |
+
|
| 17 |
+
**Example:**
|
| 18 |
+
- **Question:** "Can I use Chase Sapphire Reserve for airport lounge access when flying domestic?"
|
| 19 |
+
- **Traditional:** Check 10+ pages of terms
|
| 20 |
+
- **RAG:** Semantic search → "Yes, Priority Pass includes domestic lounges"
|
| 21 |
+
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
## Architecture
|
| 25 |
+
|
| 26 |
+
```
|
| 27 |
+
┌─────────────────────────────────────────────────────────┐
|
| 28 |
+
│ User Question │
|
| 29 |
+
│ "Which card has best grocery rewards?" │
|
| 30 |
+
└────────────────────┬────────────────────────────────────┘
|
| 31 |
+
│
|
| 32 |
+
▼
|
| 33 |
+
┌─────────────────────────────────────────────────────────┐
|
| 34 |
+
│ Query Transformation │
|
| 35 |
+
│ (Expand, rephrase, extract keywords) │
|
| 36 |
+
└────────────────────┬────────────────────────────────────┘
|
| 37 |
+
│
|
| 38 |
+
▼
|
| 39 |
+
┌─────────────────────────────────────────────────────────┐
|
| 40 |
+
│ Embedding Model │
|
| 41 |
+
│ OpenAI text-embedding-3-small │
|
| 42 |
+
│ (1536 dimensions) │
|
| 43 |
+
└────────────────────┬────────────────────────────────────┘
|
| 44 |
+
│
|
| 45 |
+
▼
|
| 46 |
+
┌─────────────────────────────────────────────────────────┐
|
| 47 |
+
│ Vector Store │
|
| 48 |
+
│ ChromaDB │
|
| 49 |
+
│ (50+ card documents) │
|
| 50 |
+
│ (10,000+ chunks) │
|
| 51 |
+
└────────────────────┬────────────────────────────────────┘
|
| 52 |
+
│
|
| 53 |
+
│ Retrieve top-k (k=5)
|
| 54 |
+
▼
|
| 55 |
+
┌─────────────────────────────────────────────────────────┐
|
| 56 |
+
│ Retrieved Context │
|
| 57 |
+
│ 1. Amex Gold: 4x points on U.S. supermarkets... │
|
| 58 |
+
│ 2. Citi Custom Cash: 5% on top category... │
|
| 59 |
+
│ 3. Chase Freedom Flex: 5% rotating categories... │
|
| 60 |
+
└────────────────────┬────────────────────────────────────┘
|
| 61 |
+
│
|
| 62 |
+
▼
|
| 63 |
+
┌─────────────────────────────────────────────────────────┐
|
| 64 |
+
│ Reranking │
|
| 65 |
+
│ (Cohere Rerank or Cross-Encoder) │
|
| 66 |
+
└────────────────────┬────────────────────────────────────┘
|
| 67 |
+
│
|
| 68 |
+
▼
|
| 69 |
+
┌─────────────────────────────────────────────────────────┐
|
| 70 |
+
│ LLM Synthesis │
|
| 71 |
+
│ Gemini 2.0 Flash Exp │
|
| 72 |
+
│ (Generate answer from context) │
|
| 73 |
+
└────────────────────┬───────────────────��────────────────┘
|
| 74 |
+
│
|
| 75 |
+
▼
|
| 76 |
+
┌─────────────────────────────────────────────────────────┐
|
| 77 |
+
│ Final Answer │
|
| 78 |
+
│ "Amex Gold offers 4x points (best rate) but has │
|
| 79 |
+
│ $25k annual cap. Citi Custom Cash gives 5% but │
|
| 80 |
+
│ only $500/month. For high spenders, use Amex." │
|
| 81 |
+
└─────────────────────────────────────────────────────────┘
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
---
|
| 85 |
+
|
| 86 |
+
## Setup
|
| 87 |
+
|
| 88 |
+
### 1. Install Dependencies
|
| 89 |
+
|
| 90 |
+
```bash
|
| 91 |
+
pip install llama-index==0.12.5 \
|
| 92 |
+
llama-index-vector-stores-chroma==0.4.1 \
|
| 93 |
+
llama-index-embeddings-openai==0.3.1 \
|
| 94 |
+
llama-index-llms-gemini==0.4.2 \
|
| 95 |
+
chromadb==0.5.23 \
|
| 96 |
+
pypdf==5.1.0 \
|
| 97 |
+
beautifulsoup4==4.12.3
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
### 2. Prepare Card Documents
|
| 101 |
+
|
| 102 |
+
Create directory structure:
|
| 103 |
+
```
|
| 104 |
+
data/
|
| 105 |
+
├── cards/
|
| 106 |
+
│ ├── amex_gold.pdf
|
| 107 |
+
│ ├── chase_sapphire_reserve.pdf
|
| 108 |
+
│ ├── citi_custom_cash.pdf
|
| 109 |
+
│ └── ... (50+ cards)
|
| 110 |
+
├── terms/
|
| 111 |
+
│ ├── amex_terms.pdf
|
| 112 |
+
│ ├── chase_terms.pdf
|
| 113 |
+
│ └── ...
|
| 114 |
+
└── guides/
|
| 115 |
+
├── maximizing_rewards.md
|
| 116 |
+
├── category_codes.md
|
| 117 |
+
└── ...
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
### 3. Document Sources
|
| 121 |
+
|
| 122 |
+
#### Option A: Scrape from Issuer Websites
|
| 123 |
+
|
| 124 |
+
```python
|
| 125 |
+
# scrape_card_docs.py
|
| 126 |
+
import requests
|
| 127 |
+
from bs4 import BeautifulSoup
|
| 128 |
+
import PyPDF2
|
| 129 |
+
import os
|
| 130 |
+
|
| 131 |
+
CARD_URLS = {
|
| 132 |
+
"amex_gold": "https://www.americanexpress.com/us/credit-cards/card/gold-card/",
|
| 133 |
+
"chase_sapphire_reserve": "https://creditcards.chase.com/rewards-credit-cards/sapphire/reserve",
|
| 134 |
+
# ... more cards
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
def scrape_card_benefits(url, output_file):
|
| 138 |
+
"""Scrape card benefits from issuer website"""
|
| 139 |
+
response = requests.get(url)
|
| 140 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
| 141 |
+
|
| 142 |
+
# Extract benefits section
|
| 143 |
+
benefits = soup.find('div', class_='benefits-section')
|
| 144 |
+
|
| 145 |
+
# Save to markdown
|
| 146 |
+
with open(output_file, 'w') as f:
|
| 147 |
+
f.write(f"# {card_name}\n\n")
|
| 148 |
+
f.write(benefits.get_text())
|
| 149 |
+
|
| 150 |
+
# Scrape all cards
|
| 151 |
+
for card_name, url in CARD_URLS.items():
|
| 152 |
+
scrape_card_benefits(url, f"data/cards/{card_name}.md")
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
#### Option B: Manual Documentation
|
| 156 |
+
|
| 157 |
+
Create markdown files:
|
| 158 |
+
|
| 159 |
+
**File:** `data/cards/amex_gold.md`
|
| 160 |
+
```markdown
|
| 161 |
+
# American Express Gold Card
|
| 162 |
+
|
| 163 |
+
## Overview
|
| 164 |
+
- **Annual Fee:** $325
|
| 165 |
+
- **Rewards Rate:** 4x points on dining & U.S. supermarkets (up to $25k/year)
|
| 166 |
+
- **Welcome Bonus:** 90,000 points after $6k spend in 6 months
|
| 167 |
+
|
| 168 |
+
## Earning Structure
|
| 169 |
+
|
| 170 |
+
### 4x Points
|
| 171 |
+
- Restaurants worldwide (including takeout & delivery)
|
| 172 |
+
- U.S. supermarkets (up to $25,000 per year, then 1x)
|
| 173 |
+
|
| 174 |
+
### 3x Points
|
| 175 |
+
- Flights booked directly with airlines or on amextravel.com
|
| 176 |
+
|
| 177 |
+
### 1x Points
|
| 178 |
+
- All other purchases
|
| 179 |
+
|
| 180 |
+
## Monthly Credits
|
| 181 |
+
- $10 Uber Cash (Uber Eats eligible)
|
| 182 |
+
- $10 Grubhub/Seamless/The Cheesecake Factory/select Shake Shack
|
| 183 |
+
|
| 184 |
+
## Travel Benefits
|
| 185 |
+
- No foreign transaction fees
|
| 186 |
+
- Trip delay insurance
|
| 187 |
+
- Lost luggage insurance
|
| 188 |
+
- Car rental loss and damage insurance
|
| 189 |
+
|
| 190 |
+
## Merchant Acceptance
|
| 191 |
+
- **Accepted:** Most merchants worldwide
|
| 192 |
+
- **Not Accepted:** Costco warehouses (Costco.com works)
|
| 193 |
+
- **Not Accepted:** Some small businesses
|
| 194 |
+
|
| 195 |
+
## Redemption Options
|
| 196 |
+
- Transfer to 20+ airline/hotel partners (1:1 ratio)
|
| 197 |
+
- Pay with Points at Amazon (0.7 cents per point)
|
| 198 |
+
- Statement credits (0.6 cents per point)
|
| 199 |
+
- Book travel through Amex Travel (1 cent per point)
|
| 200 |
+
|
| 201 |
+
## Best For
|
| 202 |
+
- High grocery spending (up to $25k/year)
|
| 203 |
+
- Frequent dining out
|
| 204 |
+
- Travelers who value transfer partners
|
| 205 |
+
|
| 206 |
+
## Limitations
|
| 207 |
+
- $25,000 annual cap on 4x supermarket category
|
| 208 |
+
- Amex not accepted everywhere
|
| 209 |
+
- Annual fee not waived first year
|
| 210 |
+
```
|
| 211 |
+
|
| 212 |
+
---
|
| 213 |
+
|
| 214 |
+
## Implementation
|
| 215 |
+
|
| 216 |
+
### File: `rewards_rag_server.py`
|
| 217 |
+
|
| 218 |
+
```python
|
| 219 |
+
"""
|
| 220 |
+
LlamaIndex RAG server for credit card benefits
|
| 221 |
+
"""
|
| 222 |
+
|
| 223 |
+
from llama_index.core import (
|
| 224 |
+
VectorStoreIndex,
|
| 225 |
+
SimpleDirectoryReader,
|
| 226 |
+
StorageContext,
|
| 227 |
+
ServiceContext,
|
| 228 |
+
Settings
|
| 229 |
+
)
|
| 230 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
| 231 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
| 232 |
+
from llama_index.llms.gemini import Gemini
|
| 233 |
+
from llama_index.core.node_parser import SentenceSplitter
|
| 234 |
+
import chromadb
|
| 235 |
+
from fastapi import FastAPI, HTTPException
|
| 236 |
+
from pydantic import BaseModel
|
| 237 |
+
import os
|
| 238 |
+
|
| 239 |
+
# Initialize FastAPI
|
| 240 |
+
app = FastAPI(title="Rewards RAG MCP Server")
|
| 241 |
+
|
| 242 |
+
# Configure LlamaIndex
|
| 243 |
+
Settings.embed_model = OpenAIEmbedding(
|
| 244 |
+
model="text-embedding-3-small",
|
| 245 |
+
api_key=os.getenv("OPENAI_API_KEY")
|
| 246 |
+
)
|
| 247 |
+
Settings.llm = Gemini(
|
| 248 |
+
model="models/gemini-2.0-flash-exp",
|
| 249 |
+
api_key=os.getenv("GEMINI_API_KEY")
|
| 250 |
+
)
|
| 251 |
+
Settings.chunk_size = 512
|
| 252 |
+
Settings.chunk_overlap = 50
|
| 253 |
+
|
| 254 |
+
# Initialize ChromaDB
|
| 255 |
+
chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
| 256 |
+
chroma_collection = chroma_client.get_or_create_collection("credit_cards")
|
| 257 |
+
|
| 258 |
+
# Create vector store
|
| 259 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
| 260 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
| 261 |
+
|
| 262 |
+
---
|
| 263 |
+
|
| 264 |
+
## Document Loading & Indexing
|
| 265 |
+
|
| 266 |
+
def load_and_index_documents():
|
| 267 |
+
"""Load card documents and create vector index"""
|
| 268 |
+
|
| 269 |
+
# Load documents from directory
|
| 270 |
+
documents = SimpleDirectoryReader(
|
| 271 |
+
input_dir="./data",
|
| 272 |
+
recursive=True,
|
| 273 |
+
required_exts=[".pdf", ".md", ".txt"]
|
| 274 |
+
).load_data()
|
| 275 |
+
|
| 276 |
+
print(f"Loaded {len(documents)} documents")
|
| 277 |
+
|
| 278 |
+
# Parse into nodes (chunks)
|
| 279 |
+
node_parser = SentenceSplitter(
|
| 280 |
+
chunk_size=512,
|
| 281 |
+
chunk_overlap=50
|
| 282 |
+
)
|
| 283 |
+
nodes = node_parser.get_nodes_from_documents(documents)
|
| 284 |
+
|
| 285 |
+
print(f"Created {len(nodes)} nodes")
|
| 286 |
+
|
| 287 |
+
# Create index
|
| 288 |
+
index = VectorStoreIndex(
|
| 289 |
+
nodes=nodes,
|
| 290 |
+
storage_context=storage_context
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# Persist to disk
|
| 294 |
+
index.storage_context.persist(persist_dir="./storage")
|
| 295 |
+
|
| 296 |
+
return index
|
| 297 |
+
|
| 298 |
+
# Load index on startup
|
| 299 |
+
try:
|
| 300 |
+
# Try loading existing index
|
| 301 |
+
storage_context = StorageContext.from_defaults(
|
| 302 |
+
vector_store=vector_store,
|
| 303 |
+
persist_dir="./storage"
|
| 304 |
+
)
|
| 305 |
+
index = VectorStoreIndex.from_storage_context(storage_context)
|
| 306 |
+
print("Loaded existing index")
|
| 307 |
+
except:
|
| 308 |
+
# Create new index
|
| 309 |
+
print("Creating new index...")
|
| 310 |
+
index = load_and_index_documents()
|
| 311 |
+
|
| 312 |
+
# Create query engine
|
| 313 |
+
query_engine = index.as_query_engine(
|
| 314 |
+
similarity_top_k=5,
|
| 315 |
+
response_mode="compact"
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
---
|
| 319 |
+
|
| 320 |
+
## API Endpoints
|
| 321 |
+
|
| 322 |
+
class QueryRequest(BaseModel):
|
| 323 |
+
query: str
|
| 324 |
+
card_name: str = None
|
| 325 |
+
top_k: int = 5
|
| 326 |
+
|
| 327 |
+
class QueryResponse(BaseModel):
|
| 328 |
+
answer: str
|
| 329 |
+
sources: list
|
| 330 |
+
confidence: float
|
| 331 |
+
|
| 332 |
+
@app.post("/query", response_model=QueryResponse)
|
| 333 |
+
async def query_benefits(request: QueryRequest):
|
| 334 |
+
"""
|
| 335 |
+
Query credit card benefits
|
| 336 |
+
|
| 337 |
+
Example:
|
| 338 |
+
POST /query
|
| 339 |
+
{
|
| 340 |
+
"query": "Which card has best grocery rewards?",
|
| 341 |
+
"top_k": 5
|
| 342 |
+
}
|
| 343 |
+
"""
|
| 344 |
+
try:
|
| 345 |
+
# Add card filter if specified
|
| 346 |
+
if request.card_name:
|
| 347 |
+
query = f"For {request.card_name}: {request.query}"
|
| 348 |
+
else:
|
| 349 |
+
query = request.query
|
| 350 |
+
|
| 351 |
+
# Query the index
|
| 352 |
+
response = query_engine.query(query)
|
| 353 |
+
|
| 354 |
+
# Extract sources
|
| 355 |
+
sources = []
|
| 356 |
+
for node in response.source_nodes:
|
| 357 |
+
sources.append({
|
| 358 |
+
"card_name": node.metadata.get("file_name", "Unknown"),
|
| 359 |
+
"content": node.text[:200] + "...",
|
| 360 |
+
"relevance_score": float(node.score)
|
| 361 |
+
})
|
| 362 |
+
|
| 363 |
+
# Calculate confidence based on top score
|
| 364 |
+
confidence = sources[0]["relevance_score"] if sources else 0.0
|
| 365 |
+
|
| 366 |
+
return QueryResponse(
|
| 367 |
+
answer=str(response),
|
| 368 |
+
sources=sources,
|
| 369 |
+
confidence=confidence
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
except Exception as e:
|
| 373 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 374 |
+
|
| 375 |
+
---
|
| 376 |
+
|
| 377 |
+
## Advanced Query Techniques
|
| 378 |
+
|
| 379 |
+
@app.post("/compare")
|
| 380 |
+
async def compare_cards(request: dict):
|
| 381 |
+
"""
|
| 382 |
+
Compare multiple cards on specific criteria
|
| 383 |
+
|
| 384 |
+
Example:
|
| 385 |
+
POST /compare
|
| 386 |
+
{
|
| 387 |
+
"cards": ["Amex Gold", "Chase Sapphire Reserve"],
|
| 388 |
+
"criteria": "travel benefits"
|
| 389 |
+
}
|
| 390 |
+
"""
|
| 391 |
+
cards = request["cards"]
|
| 392 |
+
criteria = request["criteria"]
|
| 393 |
+
|
| 394 |
+
# Query each card
|
| 395 |
+
comparisons = []
|
| 396 |
+
for card in cards:
|
| 397 |
+
query = f"What are the {criteria} for {card}?"
|
| 398 |
+
response = query_engine.query(query)
|
| 399 |
+
|
| 400 |
+
comparisons.append({
|
| 401 |
+
"card": card,
|
| 402 |
+
"benefits": str(response)
|
| 403 |
+
})
|
| 404 |
+
|
| 405 |
+
# Synthesize comparison
|
| 406 |
+
synthesis_prompt = f"""
|
| 407 |
+
Compare these cards on {criteria}:
|
| 408 |
+
|
| 409 |
+
{comparisons}
|
| 410 |
+
|
| 411 |
+
Provide a clear winner and reasoning.
|
| 412 |
+
"""
|
| 413 |
+
|
| 414 |
+
final_response = Settings.llm.complete(synthesis_prompt)
|
| 415 |
+
|
| 416 |
+
return {
|
| 417 |
+
"comparison": str(final_response),
|
| 418 |
+
"details": comparisons
|
| 419 |
+
}
|
| 420 |
+
|
| 421 |
+
---
|
| 422 |
+
|
| 423 |
+
## Metadata Filtering
|
| 424 |
+
|
| 425 |
+
def add_metadata_to_documents():
|
| 426 |
+
"""Add rich metadata for filtering"""
|
| 427 |
+
|
| 428 |
+
documents = SimpleDirectoryReader("./data").load_data()
|
| 429 |
+
|
| 430 |
+
for doc in documents:
|
| 431 |
+
# Extract card name from filename
|
| 432 |
+
card_name = doc.metadata["file_name"].replace(".md", "")
|
| 433 |
+
|
| 434 |
+
# Add metadata
|
| 435 |
+
doc.metadata.update({
|
| 436 |
+
"card_name": card_name,
|
| 437 |
+
"issuer": extract_issuer(card_name),
|
| 438 |
+
"annual_fee": extract_annual_fee(doc.text),
|
| 439 |
+
"category": extract_category(doc.text)
|
| 440 |
+
})
|
| 441 |
+
|
| 442 |
+
return documents
|
| 443 |
+
|
| 444 |
+
# Query with filters
|
| 445 |
+
@app.post("/query_filtered")
|
| 446 |
+
async def query_with_filters(request: dict):
|
| 447 |
+
"""
|
| 448 |
+
Query with metadata filters
|
| 449 |
+
|
| 450 |
+
Example:
|
| 451 |
+
POST /query_filtered
|
| 452 |
+
{
|
| 453 |
+
"query": "best travel card",
|
| 454 |
+
"filters": {
|
| 455 |
+
"issuer": "Chase",
|
| 456 |
+
"annual_fee": {"$lte": 500}
|
| 457 |
+
}
|
| 458 |
+
}
|
| 459 |
+
"""
|
| 460 |
+
from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter
|
| 461 |
+
|
| 462 |
+
# Build filters
|
| 463 |
+
filters = MetadataFilters(
|
| 464 |
+
filters=[
|
| 465 |
+
ExactMatchFilter(key="issuer", value=request["filters"]["issuer"])
|
| 466 |
+
]
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
# Query with filters
|
| 470 |
+
query_engine = index.as_query_engine(
|
| 471 |
+
similarity_top_k=5,
|
| 472 |
+
filters=filters
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
response = query_engine.query(request["query"])
|
| 476 |
+
|
| 477 |
+
return {"answer": str(response)}
|
| 478 |
+
|
| 479 |
+
---
|
| 480 |
+
|
| 481 |
+
## Hybrid Search (Keyword + Semantic)
|
| 482 |
+
|
| 483 |
+
from llama_index.core.retrievers import VectorIndexRetriever, BM25Retriever
|
| 484 |
+
from llama_index.core.query_engine import RetrieverQueryEngine
|
| 485 |
+
|
| 486 |
+
def create_hybrid_retriever():
|
| 487 |
+
"""Combine vector search + keyword search"""
|
| 488 |
+
|
| 489 |
+
# Vector retriever
|
| 490 |
+
vector_retriever = VectorIndexRetriever(
|
| 491 |
+
index=index,
|
| 492 |
+
similarity_top_k=10
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
# BM25 keyword retriever
|
| 496 |
+
bm25_retriever = BM25Retriever.from_defaults(
|
| 497 |
+
docstore=index.docstore,
|
| 498 |
+
similarity_top_k=10
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
# Combine retrievers
|
| 502 |
+
from llama_index.core.retrievers import QueryFusionRetriever
|
| 503 |
+
|
| 504 |
+
hybrid_retriever = QueryFusionRetriever(
|
| 505 |
+
retrievers=[vector_retriever, bm25_retriever],
|
| 506 |
+
similarity_top_k=5,
|
| 507 |
+
num_queries=1
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
return RetrieverQueryEngine(retriever=hybrid_retriever)
|
| 511 |
+
|
| 512 |
+
---
|
| 513 |
+
|
| 514 |
+
## Reranking for Better Results
|
| 515 |
+
|
| 516 |
+
from llama_index.postprocessor.cohere_rerank import CohereRerank
|
| 517 |
+
|
| 518 |
+
def create_reranking_query_engine():
|
| 519 |
+
"""Add reranking for improved relevance"""
|
| 520 |
+
|
| 521 |
+
# Cohere reranker
|
| 522 |
+
reranker = CohereRerank(
|
| 523 |
+
api_key=os.getenv("COHERE_API_KEY"),
|
| 524 |
+
top_n=3
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
query_engine = index.as_query_engine(
|
| 528 |
+
similarity_top_k=10, # Retrieve more candidates
|
| 529 |
+
node_postprocessors=[reranker] # Rerank to top 3
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
return query_engine
|
| 533 |
+
|
| 534 |
+
---
|
| 535 |
+
|
| 536 |
+
## Evaluation & Metrics
|
| 537 |
+
|
| 538 |
+
from llama_index.core.evaluation import (
|
| 539 |
+
RelevancyEvaluator,
|
| 540 |
+
FaithfulnessEvaluator
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
async def evaluate_rag_quality():
|
| 544 |
+
"""Evaluate RAG system quality"""
|
| 545 |
+
|
| 546 |
+
# Test queries
|
| 547 |
+
test_queries = [
|
| 548 |
+
"Which card has best grocery rewards?",
|
| 549 |
+
"Does Amex Gold work at Costco?",
|
| 550 |
+
"What are Chase Sapphire Reserve travel benefits?"
|
| 551 |
+
]
|
| 552 |
+
|
| 553 |
+
# Ground truth answers
|
| 554 |
+
ground_truth = [
|
| 555 |
+
"Citi Custom Cash offers 5% on groceries...",
|
| 556 |
+
"No, American Express is not accepted at Costco warehouses...",
|
| 557 |
+
"Chase Sapphire Reserve includes Priority Pass..."
|
| 558 |
+
]
|
| 559 |
+
|
| 560 |
+
# Evaluators
|
| 561 |
+
relevancy_evaluator = RelevancyEvaluator(llm=Settings.llm)
|
| 562 |
+
faithfulness_evaluator = FaithfulnessEvaluator(llm=Settings.llm)
|
| 563 |
+
|
| 564 |
+
results = []
|
| 565 |
+
for query, truth in zip(test_queries, ground_truth):
|
| 566 |
+
response = query_engine.query(query)
|
| 567 |
+
|
| 568 |
+
# Evaluate relevancy
|
| 569 |
+
relevancy_result = await relevancy_evaluator.aevaluate(
|
| 570 |
+
query=query,
|
| 571 |
+
response=str(response)
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
# Evaluate faithfulness
|
| 575 |
+
faithfulness_result = await faithfulness_evaluator.aevaluate(
|
| 576 |
+
query=query,
|
| 577 |
+
response=str(response),
|
| 578 |
+
contexts=[node.text for node in response.source_nodes]
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
results.append({
|
| 582 |
+
"query": query,
|
| 583 |
+
"relevancy_score": relevancy_result.score,
|
| 584 |
+
"faithfulness_score": faithfulness_result.score
|
| 585 |
+
})
|
| 586 |
+
|
| 587 |
+
return results
|
| 588 |
+
|
| 589 |
+
---
|
| 590 |
+
|
| 591 |
+
## Deployment
|
| 592 |
+
|
| 593 |
+
### 1. Build Docker Image
|
| 594 |
+
|
| 595 |
+
**File:** `Dockerfile`
|
| 596 |
+
```dockerfile
|
| 597 |
+
FROM python:3.11-slim
|
| 598 |
+
|
| 599 |
+
WORKDIR /app
|
| 600 |
+
|
| 601 |
+
# Install dependencies
|
| 602 |
+
COPY requirements.txt .
|
| 603 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 604 |
+
|
| 605 |
+
# Copy application
|
| 606 |
+
COPY . .
|
| 607 |
+
|
| 608 |
+
# Download and index documents on build
|
| 609 |
+
RUN python -c "from rewards_rag_server import load_and_index_documents; load_and_index_documents()"
|
| 610 |
+
|
| 611 |
+
# Expose port
|
| 612 |
+
EXPOSE 7860
|
| 613 |
+
|
| 614 |
+
# Run server
|
| 615 |
+
CMD ["uvicorn", "rewards_rag_server:app", "--host", "0.0.0.0", "--port", "7860"]
|
| 616 |
+
```
|
| 617 |
+
|
| 618 |
+
### 2. Deploy to Hugging Face Spaces
|
| 619 |
+
|
| 620 |
+
```bash
|
| 621 |
+
# Create Space
|
| 622 |
+
huggingface-cli repo create rewardpilot-rewards-rag --type space --space_sdk docker
|
| 623 |
+
|
| 624 |
+
# Push files
|
| 625 |
+
git add .
|
| 626 |
+
git commit -m "Deploy RAG server"
|
| 627 |
+
git push
|
| 628 |
+
```
|
| 629 |
+
|
| 630 |
+
---
|
| 631 |
+
|
| 632 |
+
## Performance Optimization
|
| 633 |
+
|
| 634 |
+
### 1. Caching Embeddings
|
| 635 |
+
|
| 636 |
+
```python
|
| 637 |
+
from functools import lru_cache
|
| 638 |
+
|
| 639 |
+
@lru_cache(maxsize=1000)
|
| 640 |
+
def get_embedding(text: str):
|
| 641 |
+
"""Cache embeddings for repeated queries"""
|
| 642 |
+
return Settings.embed_model.get_text_embedding(text)
|
| 643 |
+
```
|
| 644 |
+
|
| 645 |
+
### 2. Batch Processing
|
| 646 |
+
|
| 647 |
+
```python
|
| 648 |
+
async def batch_query(queries: list):
|
| 649 |
+
"""Process multiple queries in parallel"""
|
| 650 |
+
import asyncio
|
| 651 |
+
|
| 652 |
+
tasks = [query_engine.aquery(q) for q in queries]
|
| 653 |
+
results = await asyncio.gather(*tasks)
|
| 654 |
+
|
| 655 |
+
return results
|
| 656 |
+
```
|
| 657 |
+
|
| 658 |
+
### 3. Index Optimization
|
| 659 |
+
|
| 660 |
+
```python
|
| 661 |
+
# Use smaller embedding model for speed
|
| 662 |
+
Settings.embed_model = OpenAIEmbedding(
|
| 663 |
+
model="text-embedding-3-small", # 1536 dims
|
| 664 |
+
# vs text-embedding-3-large (3072 dims)
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
# Reduce chunk size for faster retrieval
|
| 668 |
+
Settings.chunk_size = 256 # vs 512
|
| 669 |
+
```
|
| 670 |
+
|
| 671 |
+
---
|
| 672 |
+
|
| 673 |
+
## Monitoring
|
| 674 |
+
|
| 675 |
+
```python
|
| 676 |
+
import time
|
| 677 |
+
from prometheus_client import Counter, Histogram
|
| 678 |
+
|
| 679 |
+
# Metrics
|
| 680 |
+
query_counter = Counter('rag_queries_total', 'Total RAG queries')
|
| 681 |
+
query_duration = Histogram('rag_query_duration_seconds', 'RAG query duration')
|
| 682 |
+
|
| 683 |
+
@app.post("/query")
|
| 684 |
+
async def query_with_monitoring(request: QueryRequest):
|
| 685 |
+
query_counter.inc()
|
| 686 |
+
|
| 687 |
+
start_time = time.time()
|
| 688 |
+
response = query_engine.query(request.query)
|
| 689 |
+
duration = time.time() - start_time
|
| 690 |
+
|
| 691 |
+
query_duration.observe(duration)
|
| 692 |
+
|
| 693 |
+
return response
|
| 694 |
+
```
|
| 695 |
+
|
| 696 |
+
---
|
| 697 |
+
|
| 698 |
+
**Related Documentation:**
|
| 699 |
+
- [MCP Server Implementation](./mcp_architecture.md)
|
| 700 |
+
- [Modal Deployment Guide](./modal_deployment.md)
|
| 701 |
+
- [Agent Reasoning Flow](./agent_reasoning.md)
|
| 702 |
+
```
|
| 703 |
+
|
| 704 |
+
---
|