Spaces:
Sleeping
Sleeping
Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# train.py
|
| 2 |
+
from transformers import ViTImageProcessor, ViTForImageClassification, TrainingArguments, Trainer
|
| 3 |
+
from transformers import DefaultDataCollator
|
| 4 |
+
from datasets import load_dataset, Image
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
# 1. Charger le dataset et le mapper aux classes
|
| 8 |
+
dataset = load_dataset("ashraq/fashion-product-images-small", name="styles", split="train")
|
| 9 |
+
dataset = dataset.train_test_split(test_size=0.2)
|
| 10 |
+
train_ds = dataset["train"]
|
| 11 |
+
test_ds = dataset["test"]
|
| 12 |
+
|
| 13 |
+
# 2. Créer la liste des labels (catégories uniques)
|
| 14 |
+
labels = train_ds.unique("articleType")
|
| 15 |
+
label2id, id2label = {}, {}
|
| 16 |
+
for i, label in enumerate(labels):
|
| 17 |
+
label2id[label] = i
|
| 18 |
+
id2label[i] = label
|
| 19 |
+
|
| 20 |
+
# 3. Charger le processeur et le modèle de base CORRECTS
|
| 21 |
+
# On prend un modèle pré-entraîné sur ImageNet, pas sur des haricots !
|
| 22 |
+
model_ckpt = "google/vit-base-patch16-224"
|
| 23 |
+
processor = ViTImageProcessor.from_pretrained(model_ckpt)
|
| 24 |
+
model = ViTForImageClassification.from_pretrained(
|
| 25 |
+
model_ckpt,
|
| 26 |
+
num_labels=len(labels),
|
| 27 |
+
id2label=id2label,
|
| 28 |
+
label2id=label2id,
|
| 29 |
+
ignore_mismatched_sizes=True # Important car le nombre de classes change
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# 4. Fonction de preprocessing pour transformer les images
|
| 33 |
+
def transform(example_batch):
|
| 34 |
+
inputs = processor([Image.open(img).convert("RGB") for img in example_batch["image_path"]], return_tensors="pt")
|
| 35 |
+
inputs["labels"] = [label2id[label] for label in example_batch["articleType"]]
|
| 36 |
+
return inputs
|
| 37 |
+
|
| 38 |
+
# Appliquer le preprocessing
|
| 39 |
+
train_ds = train_ds.cast_column("image_path", Image())
|
| 40 |
+
test_ds = test_ds.cast_column("image_path", Image())
|
| 41 |
+
|
| 42 |
+
train_ds.set_transform(transform)
|
| 43 |
+
test_ds.set_transform(transform)
|
| 44 |
+
|
| 45 |
+
# 5. Définir les arguments d'entraînement
|
| 46 |
+
training_args = TrainingArguments(
|
| 47 |
+
output_dir="./vit-fashion-classifier",
|
| 48 |
+
per_device_train_batch_size=16,
|
| 49 |
+
evaluation_strategy="steps",
|
| 50 |
+
num_train_epochs=4,
|
| 51 |
+
fp16=True,
|
| 52 |
+
save_steps=100,
|
| 53 |
+
eval_steps=100,
|
| 54 |
+
logging_steps=10,
|
| 55 |
+
learning_rate=2e-4,
|
| 56 |
+
save_total_limit=2,
|
| 57 |
+
remove_unused_columns=False,
|
| 58 |
+
push_to_hub=True, # Pour pousser directement sur votre HF Space après l'entraînement
|
| 59 |
+
hub_model_id="MODLI/vit-fashion-classifier", # Remplacez par votre repo
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# 6. Lancer l'entraînement
|
| 63 |
+
trainer = Trainer(
|
| 64 |
+
model=model,
|
| 65 |
+
args=training_args,
|
| 66 |
+
data_collator=DefaultDataCollator(),
|
| 67 |
+
train_dataset=train_ds,
|
| 68 |
+
eval_dataset=test_ds,
|
| 69 |
+
tokenizer=processor,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
trainer.train()
|
| 73 |
+
trainer.push_to_hub()
|