Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import requests
|
| 6 |
+
from io import BytesIO
|
| 7 |
+
|
| 8 |
+
# Chargement du modèle spécialisé dans la mode
|
| 9 |
+
MODEL_NAME = "google/vit-base-patch16-224" # Modèle de base fiable
|
| 10 |
+
# Alternative: "nateraw/fashion-clip" si disponible
|
| 11 |
+
|
| 12 |
+
# Initialisation du modèle
|
| 13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
print(f"🖥️ Utilisation du device: {device}")
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
# Chargeur d'images
|
| 18 |
+
processor = AutoImageProcessor.from_pretrained(MODEL_NAME)
|
| 19 |
+
# Modèle de classification
|
| 20 |
+
model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
|
| 21 |
+
model.to(device)
|
| 22 |
+
model.eval()
|
| 23 |
+
print("✅ Modèle chargé avec succès!")
|
| 24 |
+
except Exception as e:
|
| 25 |
+
print(f"❌ Erreur chargement modèle: {e}")
|
| 26 |
+
processor = None
|
| 27 |
+
model = None
|
| 28 |
+
|
| 29 |
+
def classify_clothing(image):
|
| 30 |
+
"""Classifie une image de vêtement"""
|
| 31 |
+
try:
|
| 32 |
+
if image is None:
|
| 33 |
+
return "❌ Veuillez uploader une image de vêtement"
|
| 34 |
+
|
| 35 |
+
if processor is None or model is None:
|
| 36 |
+
return "⚠️ Modèle en cours de chargement... Réessayez dans 30 secondes"
|
| 37 |
+
|
| 38 |
+
# Prétraitement de l'image
|
| 39 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 40 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 41 |
+
|
| 42 |
+
# Classification
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
outputs = model(**inputs)
|
| 45 |
+
|
| 46 |
+
# Récupération des résultats
|
| 47 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 48 |
+
top_probs, top_indices = torch.topk(probabilities, 5)
|
| 49 |
+
|
| 50 |
+
# Conversion en résultats lisibles
|
| 51 |
+
results = []
|
| 52 |
+
for i in range(len(top_indices[0])):
|
| 53 |
+
label = model.config.id2label[top_indices[0][i].item()]
|
| 54 |
+
score = top_probs[0][i].item() * 100
|
| 55 |
+
results.append({"label": label, "score": score})
|
| 56 |
+
|
| 57 |
+
# Formatage des résultats
|
| 58 |
+
output = "## 🎯 Résultats de Classification:\n\n"
|
| 59 |
+
for i, result in enumerate(results):
|
| 60 |
+
# Nettoyage des labels
|
| 61 |
+
clean_label = result['label'].replace('_', ' ').title()
|
| 62 |
+
output += f"{i+1}. **{clean_label}** - {result['score']:.1f}%\n"
|
| 63 |
+
|
| 64 |
+
output += "\n---\n"
|
| 65 |
+
output += "💡 **Conseils pour de meilleurs résultats:**\n"
|
| 66 |
+
output += "• Utilisez des images claires sur fond uni\n"
|
| 67 |
+
output += "• Cadrez bien le vêtement\n"
|
| 68 |
+
output += "• Évitez les images avec plusieurs personnes\n"
|
| 69 |
+
|
| 70 |
+
return output
|
| 71 |
+
|
| 72 |
+
except Exception as e:
|
| 73 |
+
return f"❌ Erreur lors de la classification: {str(e)}"
|
| 74 |
+
|
| 75 |
+
def load_example_image(url):
|
| 76 |
+
"""Charge une image d'exemple depuis une URL"""
|
| 77 |
+
try:
|
| 78 |
+
response = requests.get(url, timeout=10)
|
| 79 |
+
image = Image.open(BytesIO(response.content))
|
| 80 |
+
return image
|
| 81 |
+
except:
|
| 82 |
+
return None
|
| 83 |
+
|
| 84 |
+
# Exemples d'images de test
|
| 85 |
+
example_images = [
|
| 86 |
+
["https://images.unsplash.com/photo-1558769132-cb1aea458c5e?w=400"], # T-shirt
|
| 87 |
+
["https://images.unsplash.com/photo-1594633312681-425c7b97ccd1?w=400"], # Robe
|
| 88 |
+
["https://images.unsplash.com/photo-1529111290557-82f6d5c6cf85?w=400"], # Chemise
|
| 89 |
+
["https://images.unsplash.com/photo-1543163521-1bf539c55dd2?w=400"], # Veste
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
# Interface Gradio
|
| 93 |
+
with gr.Blocks(title="Classificateur de Vêtements", theme=gr.themes.Soft()) as demo:
|
| 94 |
+
gr.Markdown("""
|
| 95 |
+
# 👗 Classificateur de Vêtements Intelligent
|
| 96 |
+
**Uploader une image de vêtement** pour obtenir sa classification automatique
|
| 97 |
+
""")
|
| 98 |
+
|
| 99 |
+
with gr.Row():
|
| 100 |
+
with gr.Column(scale=1):
|
| 101 |
+
gr.Markdown("### 📤 Uploader votre image")
|
| 102 |
+
image_input = gr.Image(
|
| 103 |
+
type="pil",
|
| 104 |
+
label="Image de vêtement",
|
| 105 |
+
height=300,
|
| 106 |
+
sources=["upload", "webcam", "clipboard"]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
gr.Markdown("### 🎯 Actions")
|
| 110 |
+
classify_btn = gr.Button("🚀 Classifier", variant="primary")
|
| 111 |
+
clear_btn = gr.Button("🧹 Effacer", variant="secondary")
|
| 112 |
+
|
| 113 |
+
gr.Markdown("### 💡 Conseils")
|
| 114 |
+
gr.Markdown("""
|
| 115 |
+
- Images claires et bien éclairées
|
| 116 |
+
- Vêtement visible et bien cadré
|
| 117 |
+
- Fond simple de préférence
|
| 118 |
+
""")
|
| 119 |
+
|
| 120 |
+
with gr.Column(scale=2):
|
| 121 |
+
gr.Markdown("### 📊 Résultats")
|
| 122 |
+
output_text = gr.Markdown(
|
| 123 |
+
value="⬅️ Uploader une image ou choisissez un exemple ci-dessous"
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
# Section exemples
|
| 127 |
+
gr.Markdown("### 🖼️ Exemples à tester")
|
| 128 |
+
gr.Examples(
|
| 129 |
+
examples=example_images,
|
| 130 |
+
inputs=image_input,
|
| 131 |
+
outputs=output_text,
|
| 132 |
+
fn=classify_clothing,
|
| 133 |
+
label="Cliquez sur une image pour tester",
|
| 134 |
+
cache_examples=True
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
# Événements
|
| 138 |
+
classify_btn.click(
|
| 139 |
+
fn=classify_clothing,
|
| 140 |
+
inputs=[image_input],
|
| 141 |
+
outputs=output_text
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
clear_btn.click(
|
| 145 |
+
fn=lambda: (None, "⬅️ Uploader une nouvelle image"),
|
| 146 |
+
inputs=[],
|
| 147 |
+
outputs=[image_input, output_text]
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Classification automatique au changement
|
| 151 |
+
image_input.change(
|
| 152 |
+
fn=classify_clothing,
|
| 153 |
+
inputs=[image_input],
|
| 154 |
+
outputs=output_text
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Configuration
|
| 158 |
+
if __name__ == "__main__":
|
| 159 |
+
demo.launch(
|
| 160 |
+
server_name="0.0.0.0",
|
| 161 |
+
server_port=7860,
|
| 162 |
+
share=False,
|
| 163 |
+
debug=True
|
| 164 |
+
)
|