poma3d_demo / app.py
Yebulabula
complete_demo_app
4016bec
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os, glob, re, torch, numpy as np
from typing import List, Tuple
from safetensors.torch import load_file
import gradio as gr
import plotly.graph_objects as go
import torch.nn as nn
from huggingface_hub import hf_hub_download, list_repo_files
# =========================
# Config
# =========================
LOCAL_FILE_DEFAULT = "assets/scene0073_00.safetensors" # local safetensors file
PM_KEY_DEFAULT = "point_map"
TOPK_VIEWS_DEFAULT = 3
VOXEL_SIZE = 0.02
DOWNSAMPLE_N_MAX = 600_000
POINT_SIZE_MIN = 1.2
POINT_SIZE_MAX = 2.0
CLR_RED = "rgba(230,40,40,0.98)"
BG_COLOR = "#f7f9fb"
GRID_COLOR = "#e6ecf2"
BOX_COLOR = "rgba(80,80,80,0.6)"
TOP_VIEW_IMAGE_PATH = "assets/scene0073_00.png"
DEFAULT_CAM = dict(
eye=dict(x=1.35, y=1.35, z=0.95),
up=dict(x=0, y=0, z=1),
center=dict(x=0, y=0, z=0),
projection=dict(type="perspective"),
)
def _merge_safetensors_dicts(paths: List[str]):
merged = {}
for p in paths:
sd = load_file(p, device="cpu")
merged.update(sd)
return merged
def _local_all_under(path: str) -> List[str]:
out = []
if os.path.isfile(path):
return [path]
for root, _, files in os.walk(path):
for f in files:
out.append(os.path.join(root, f))
return sorted(out)
# =========================
# Load pretrained (your existing loader)
# =========================
def load_pretrain(
model: torch.nn.Module,
ckpt_path: str, # e.g. "assets/ckpt_100.pth" or "assets/model.safetensors"
repo_id: str = "MatchLab/poma3d-demo",
revision: str = "main",
allow_local_fallback: bool = True,
):
if allow_local_fallback and (os.path.isfile(ckpt_path) or os.path.isdir(ckpt_path)):
print(f"📂 Using local checkpoint(s): {ckpt_path}")
local_files = _local_all_under(ckpt_path)
else:
# 2) REMOTE: resolve file list from Space
print(f"📦 Resolving from HF Space: {repo_id}/{ckpt_path} (rev={revision})")
files = list_repo_files(repo_id=repo_id, repo_type='model', revision=revision)
# Exact file hit?
if ckpt_path in files:
to_fetch = [ckpt_path]
else:
# Treat ckpt_path as a folder prefix (ensure trailing slash for matching)
prefix = ckpt_path if ckpt_path.endswith("/") else ckpt_path + "/"
to_fetch = [f for f in files if f.startswith(prefix)]
if not to_fetch:
preview = "\n".join(files[:100])
raise FileNotFoundError(
f"'{ckpt_path}' not found in Space '{repo_id}' (rev='{revision}').\n"
f"Files present (first 100):\n{preview}"
)
# Download all matching files locally
local_files = []
for rel in to_fetch:
lp = hf_hub_download(repo_id=repo_id, filename=rel, repo_type='model', revision=revision)
local_files.append(lp)
local_files.sort()
# Filter by types we know how to load
safes = [p for p in local_files if p.endswith(".safetensors")]
pths = [p for p in local_files if re.search(r"\.(?:pth|pt)$", p)]
if safes:
print(f"🧩 Found {len(safes)} .safetensors shard(s); merging…")
state = _merge_safetensors_dicts(safes)
elif pths:
# pick the largest .pth/.pt to avoid optimizer/state variants
pths_sorted = sorted(pths, key=lambda p: os.path.getsize(p), reverse=True)
pick = pths_sorted[0]
print(f"🧩 Using .pth/.pt: {os.path.basename(pick)} (largest of {len(pths)} candidates)")
state = torch.load(pick, map_location="cpu")
# strip common prefixes
if isinstance(state, dict) and any(k.startswith(("model.", "target_model.")) for k in state.keys()):
state = { (k.split(".", 1)[1] if k.startswith(("model.", "target_model.")) else k): v
for k, v in state.items() }
# nested 'state_dict'
if isinstance(state, dict) and "state_dict" in state and isinstance(state["state_dict"], dict):
state = state["state_dict"]
else:
raise FileNotFoundError(
"No loadable checkpoint found. Expecting one or more of: "
".safetensors or .pth/.pt under the given path."
)
# Load into model
result = model.load_state_dict(state, strict=False)
# Report
weight_keys = set(state.keys()) if isinstance(state, dict) else set()
model_keys = set(model.state_dict().keys())
loaded_keys = model_keys.intersection(weight_keys)
print("✅ Weights loaded")
print(f" • Loaded keys: {len(loaded_keys)}")
print(f" • Missing keys: {len(result.missing_keys)}")
print(f" • Unexpected keys: {len(result.unexpected_keys)}")
return result
# =========================
# Representation model (fg-clip-base + LoRA)
# =========================
def build_model(device: torch.device):
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from peft import LoraConfig, get_peft_model
class RepModel(torch.nn.Module):
def __init__(self, model_root="qihoo360/fg-clip-base"):
super().__init__()
lora_cfg = LoraConfig(
r=32, lora_alpha=64,
target_modules=["q_proj","k_proj","v_proj","fc1","fc2"],
lora_dropout=0.05, bias="none",
task_type="FEATURE_EXTRACTION"
)
cfg = AutoConfig.from_pretrained(model_root, trust_remote_code=True)
base = AutoModelForCausalLM.from_config(cfg, trust_remote_code=True)
self.target_model = get_peft_model(base, lora_cfg)
self.tokenizer = AutoTokenizer.from_pretrained(model_root, trust_remote_code=True, use_fast=True)
@torch.no_grad()
def get_text_feature(self, texts, device):
tok = self.tokenizer(texts, padding="max_length", truncation=True, max_length=248, return_tensors="pt").to(device)
feats = self.target_model.get_text_features(tok["input_ids"], walk_short_pos=False)
feats = torch.nn.functional.normalize(feats.float(), dim=-1)
return feats
@torch.no_grad()
def get_image_feature(self, pm_batched):
feats = self.target_model.get_image_features(pm_batched)
feats = torch.nn.functional.normalize(feats.float(), dim=-1)
return feats
m = RepModel().to(device).eval()
print("Using fg-clip-base RepModel.")
return m
# =========================
# Data loading & helpers
# =========================
def load_scene_local(path: str, pm_key: str = PM_KEY_DEFAULT) -> torch.Tensor:
if not os.path.exists(path):
raise FileNotFoundError(f"Local file not found: {path}")
sd = load_file(path)
if pm_key not in sd:
raise KeyError(f"Key '{pm_key}' not found in {list(sd.keys())}")
pm = sd[pm_key] # (V,H,W,3)
if pm.dim() != 4 or pm.shape[-1] != 3:
raise ValueError(f"Invalid shape {tuple(pm.shape)}, expected (V,H,W,3)")
return pm.permute(0, 3, 1, 2).contiguous() # -> (V,3,H,W)
def _xyz_to_numpy(xyz: torch.Tensor) -> np.ndarray:
pts = xyz.permute(1, 2, 0).reshape(-1, 3).cpu().numpy().astype(np.float32)
mask = np.isfinite(pts).all(axis=1)
return pts[mask]
def stack_views(pm: torch.Tensor) -> Tuple[np.ndarray, np.ndarray]:
pts_all, vid_all = [], []
for v in range(pm.shape[0]):
pts = _xyz_to_numpy(pm[v])
if pts.size == 0: continue
pts_all.append(pts)
vid_all.append(np.full((pts.shape[0],), v, dtype=np.int32))
pts_all = np.concatenate(pts_all, axis=0)
vid_all = np.concatenate(vid_all, axis=0)
return pts_all, vid_all
def voxel_downsample_with_ids(pts, vids, voxel: float):
if pts.shape[0] == 0: return pts, vids
grid = np.floor(pts / voxel).astype(np.int64)
key = np.core.records.fromarrays(grid.T, names="x,y,z", formats="i8,i8,i8")
_, uniq_idx = np.unique(key, return_index=True)
return pts[uniq_idx], vids[uniq_idx]
def hard_cap(pts, vids, cap: int):
N = pts.shape[0]
if N <= cap: return pts, vids
idx = np.random.choice(N, size=cap, replace=False)
return pts[idx], vids[idx]
def adaptive_point_size(n: int) -> float:
ps = 2.4 * (150_000 / max(n, 10)) ** 0.25
return float(np.clip(ps, POINT_SIZE_MIN, POINT_SIZE_MAX))
def scene_bbox(pts: np.ndarray):
mn, mx = pts.min(axis=0), pts.max(axis=0)
x0,y0,z0 = mn; x1,y1,z1 = mx
corners = np.array([
[x0,y0,z0],[x1,y0,z0],[x1,y1,z0],[x0,y1,z0],
[x0,y0,z1],[x1,y0,z1],[x1,y1,z1],[x0,y1,z1]
])
edges = [(0,1),(1,2),(2,3),(3,0),(4,5),(5,6),(6,7),(7,4),(0,4),(1,5),(2,6),(3,7)]
xs,ys,zs=[],[],[]
for a,b in edges:
xs += [corners[a,0], corners[b,0], None]
ys += [corners[a,1], corners[b,1], None]
zs += [corners[a,2], corners[b,2], None]
return xs,ys,zs
@torch.no_grad()
def rank_views_for_text(model, text, pm, device, topk: int):
img_feats = model.get_image_feature(pm.float().to(device))
txt_feat = model.get_text_feature([text], device=device)[0]
sims = torch.matmul(img_feats, txt_feat)
order = torch.argsort(sims, descending=True)[:max(1, int(topk))]
return order.tolist()
# =========================
# Visualization
# =========================
def depth_values(pts: np.ndarray) -> np.ndarray:
z = pts[:, 2]
z_min, z_max = z.min(), z.max()
return (z - z_min) / (z_max - z_min + 1e-9)
def base_figure_gray_depth(pts: np.ndarray, point_size: float, camera=DEFAULT_CAM) -> go.Figure:
depth = depth_values(pts)
fig = go.Figure(go.Scatter3d(
x=pts[:,0], y=pts[:,1], z=pts[:,2],
mode="markers",
marker=dict(size=point_size, color=depth, colorscale="Greys", reversescale=True, opacity=0.50),
hoverinfo="skip"
))
bx,by,bz = scene_bbox(pts)
fig.add_trace(go.Scatter3d(x=bx,y=by,z=bz,mode="lines",line=dict(color=BOX_COLOR,width=2),hoverinfo="skip"))
fig.update_layout(scene=dict(aspectmode="data",camera=camera),
margin=dict(l=0,r=0,b=0,t=0),
paper_bgcolor=BG_COLOR,
showlegend=False)
return fig
def highlight_views_3d(pts, view_ids, selected, point_size, camera=DEFAULT_CAM):
depth = depth_values(pts)
colors = np.stack([depth, depth, depth], axis=1)
if selected:
sel_mask = np.isin(view_ids, np.array(selected, dtype=np.int32))
colors[sel_mask] = np.array([1, 0, 0])
fig = go.Figure(go.Scatter3d(
x=pts[:,0], y=pts[:,1], z=pts[:,2],
mode="markers",
marker=dict(size=point_size,
color=[f"rgb({int(r*255)},{int(g*255)},{int(b*255)})"
for r,g,b in colors],
opacity=0.98),
hoverinfo="skip"
))
bx,by,bz = scene_bbox(pts)
fig.add_trace(go.Scatter3d(x=bx,y=by,z=bz,mode="lines",
line=dict(color=BOX_COLOR,width=2),hoverinfo="skip"))
fig.update_layout(scene=dict(aspectmode="data",camera=camera),
margin=dict(l=0,r=0,b=0,t=0),
paper_bgcolor=BG_COLOR,
showlegend=False)
return fig
# =========================
# App setup
# =========================
device = 'cpu'
model = build_model(device)
load_pretrain(model, "assets/ckpt_100.pth")
with gr.Blocks(
title="POMA-3D: Text-conditioned 3D Scene Visualization",
css="#plot3d, #img_ref {height: 450px !important;}"
) as demo:
gr.Markdown("### POMA-3D: The Point Map Way to 3D Scene Understanding - Embodied Localization Demo\n"
"Enter agent's situation text and choose **Top-K**; the most relevant views will turn **red**.")
with gr.Row():
text_in = gr.Textbox(label="Text query", value="I am sleeping on the bed.", scale=4)
topk_in = gr.Number(label="Top-K views", value=TOPK_VIEWS_DEFAULT, precision=0, minimum=1, maximum=12)
submit_btn = gr.Button("Locate", variant="primary")
with gr.Row(equal_height=True):
with gr.Column(scale=1, min_width=500):
plot3d = gr.Plot(label="3D Point Cloud (rotatable)", elem_id="plot3d")
with gr.Column(scale=1, min_width=500):
img_ref = gr.Image(label="Top-Down Reference View", value=TOP_VIEW_IMAGE_PATH, elem_id="img_ref")
status = gr.Markdown()
pm_state = gr.State(None)
pts_state = gr.State(None)
vids_state = gr.State(None)
# Load scene automatically from LOCAL_FILE_DEFAULT
def on_load():
pm = load_scene_local(LOCAL_FILE_DEFAULT)
pts_all, vids_all = stack_views(pm)
pts_vx, vids_vx = voxel_downsample_with_ids(pts_all, vids_all, VOXEL_SIZE)
pts_vx, vids_vx = hard_cap(pts_vx, vids_vx, DOWNSAMPLE_N_MAX)
ps = adaptive_point_size(pts_vx.shape[0])
fig3d = base_figure_gray_depth(pts_vx, ps, camera=DEFAULT_CAM)
msg = f"✅ Loaded {os.path.basename(LOCAL_FILE_DEFAULT)} | Views: {pm.shape[0]} | Points: {pts_vx.shape[0]:,}"
return fig3d, TOP_VIEW_IMAGE_PATH, msg, pm, pts_vx, vids_vx
def on_submit(text, topk, pm, pts_vx, vids_vx):
if pm is None:
return gr.update(), TOP_VIEW_IMAGE_PATH, "⚠️ Scene not loaded yet."
k = int(max(1, min(12, int(topk)))) if topk else TOPK_VIEWS_DEFAULT
top_views = rank_views_for_text(model, text, pm, device, topk=k)
ps = adaptive_point_size(pts_vx.shape[0])
fig = highlight_views_3d(pts_vx, vids_vx, top_views, ps, camera=DEFAULT_CAM)
msg = f"Highlighted views (top-{k}): {top_views}"
return fig, TOP_VIEW_IMAGE_PATH, msg
demo.load(on_load, inputs=[], outputs=[plot3d, img_ref, status, pm_state, pts_state, vids_state])
submit_btn.click(on_submit, inputs=[text_in, topk_in, pm_state, pts_state, vids_state],
outputs=[plot3d, img_ref, status])
if __name__ == "__main__":
demo.launch()