Spaces:
Runtime error
Runtime error
Commit
·
37c5430
1
Parent(s):
0b935c0
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# importing the libraries
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
import plotly.express as px
|
| 7 |
+
import streamlit as st
|
| 8 |
+
|
| 9 |
+
# Title and Markdown
|
| 10 |
+
st.title("AN EXAMPLE EDA APP")
|
| 11 |
+
st.markdown(''' <h3>This is an example of how to do EDA in streamlit app</h3>''',unsafe_allow_html=True)
|
| 12 |
+
|
| 13 |
+
# File upload
|
| 14 |
+
file_up = st.file_uploader("Upload a file", type='csv')
|
| 15 |
+
|
| 16 |
+
# Check if the file uploaded is successfull or not, if successfull then read the file
|
| 17 |
+
if file_up is not None:
|
| 18 |
+
st.success("File uploaded successfully")
|
| 19 |
+
df = pd.read_csv(file_up)
|
| 20 |
+
obj = []
|
| 21 |
+
int_float = []
|
| 22 |
+
for i in df.columns:
|
| 23 |
+
clas = df[i].dtypes
|
| 24 |
+
if clas == 'object':
|
| 25 |
+
obj.append(i)
|
| 26 |
+
else:
|
| 27 |
+
int_float.append(i)
|
| 28 |
+
|
| 29 |
+
# Remove null values and replace them with mean and median value
|
| 30 |
+
with st.form(key='my_form'):
|
| 31 |
+
with st.sidebar:
|
| 32 |
+
st.sidebar.header("To remove NULL values press below button")
|
| 33 |
+
submit_button = st.form_submit_button(label="Remove NULL")
|
| 34 |
+
|
| 35 |
+
if submit_button:
|
| 36 |
+
for i in df.columns:
|
| 37 |
+
clas = df[i].dtypes
|
| 38 |
+
if clas == 'object':
|
| 39 |
+
df[i].fillna(df[i].mode()[0], inplace = True)
|
| 40 |
+
else:
|
| 41 |
+
df[i].fillna(df[i].mean(), inplace = True)
|
| 42 |
+
|
| 43 |
+
# finding the number of null values in each column
|
| 44 |
+
ls = []
|
| 45 |
+
for i in df.columns:
|
| 46 |
+
dd = sum(pd.isnull(df[i]))
|
| 47 |
+
ls.append(dd)
|
| 48 |
+
|
| 49 |
+
# if number of null values are zero it will display some text else it will plot bar plot by each column
|
| 50 |
+
if max(ls) == 0:
|
| 51 |
+
st.write("Total no. of NULL values: ", str(max(ls)))
|
| 52 |
+
else:
|
| 53 |
+
st.write("Bar plot to know the number of NULL values in each column")
|
| 54 |
+
st.write("Total number of null values: ", str(max(ls)))
|
| 55 |
+
fig = px.bar(x=df.columns, y=ls,labels={'x':"Column Names",'y':"No. of Null values"})
|
| 56 |
+
st.plotly_chart(fig)
|
| 57 |
+
|
| 58 |
+
# Frequency Plot
|
| 59 |
+
st.sidebar.header("Select variable")
|
| 60 |
+
selected = st.sidebar.selectbox('Object variables',obj)
|
| 61 |
+
st.write("Bar Plot to know the frequency of each category")
|
| 62 |
+
frequency = df[selected].value_counts()
|
| 63 |
+
|
| 64 |
+
fig2 = px.bar(frequency, x=frequency.index,y=selected,labels={'x':selected, 'y':'count'})
|
| 65 |
+
st.plotly_chart(fig2)
|
| 66 |
+
|
| 67 |
+
# Correlation chart
|
| 68 |
+
st.sidebar.header("Select variable")
|
| 69 |
+
selected2 = st.sidebar.multiselect("Variables",int_float)
|
| 70 |
+
st.write("Scatter plot for correlation")
|
| 71 |
+
if len(selected2) == 2:
|
| 72 |
+
fig3 = px.scatter(df,x=selected2[0], y=selected2[1])
|
| 73 |
+
st.plotly_chart(fig3)
|
| 74 |
+
else:
|
| 75 |
+
st.write("Select any 2 variables only")
|