File size: 3,904 Bytes
60a9595
 
7471f75
2dcb7ad
 
 
 
 
 
60a9595
 
2dcb7ad
 
60a9595
2dcb7ad
60a9595
2dcb7ad
2ad6a17
2dcb7ad
2ad6a17
2dcb7ad
2ad6a17
2dcb7ad
2ad6a17
2dcb7ad
 
2ad6a17
2dcb7ad
 
2ad6a17
2dcb7ad
 
 
60a9595
2dcb7ad
 
 
 
 
 
 
 
 
 
 
 
 
2ad6a17
7471f75
60a9595
 
 
7471f75
2ad6a17
 
 
 
 
 
 
 
7471f75
60a9595
2ad6a17
 
 
 
 
 
 
 
 
 
 
 
 
 
7471f75
 
2ad6a17
 
 
 
 
 
60a9595
2ad6a17
 
 
 
 
 
 
 
 
 
 
 
 
60a9595
 
 
1b21789
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# hf_backend.py
import time, logging
from typing import Any, Dict, AsyncIterable

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from backends_base import ChatBackend, ImagesBackend
from config import settings

logger = logging.getLogger(__name__)

try:
    import spaces
    from spaces.zero import client as zero_client
except ImportError:
    spaces, zero_client = None, None

# --- Model setup ---
MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
logger.info(f"Preloading tokenizer for {MODEL_ID} on CPU...")

tokenizer, load_error = None, None
try:
    tokenizer = AutoTokenizer.from_pretrained(
        MODEL_ID,
        trust_remote_code=True,
        use_fast=False
    )
except Exception as e:
    load_error = f"Failed to load tokenizer: {e}"
    logger.exception(load_error)


# ---------------- Chat Backend ----------------
class HFChatBackend(ChatBackend):
    async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
        if load_error:
            raise RuntimeError(load_error)

        messages = request.get("messages", [])
        prompt = messages[-1]["content"] if messages else "(empty)"
        temperature = float(request.get("temperature", settings.LlmTemp or 0.7))
        max_tokens = int(request.get("max_tokens", settings.LlmOpenAICtxSize or 512))

        rid = f"chatcmpl-hf-{int(time.time())}"
        now = int(time.time())

        # --- Inject X-IP-Token into global headers if ZeroGPU is used ---
        x_ip_token = request.get("x_ip_token")
        if x_ip_token and zero_client:
            zero_client.HEADERS["X-IP-Token"] = x_ip_token
            logger.debug("Injected X-IP-Token into ZeroGPU headers")

        def _run_once(prompt: str, device: str, dtype: torch.dtype) -> str:
            model = AutoModelForCausalLM.from_pretrained(
                MODEL_ID,
                torch_dtype=dtype,
                trust_remote_code=True,
                device_map="auto" if device != "cpu" else {"": "cpu"},
            )
            model.eval()
            inputs = tokenizer(prompt, return_tensors="pt").to(device)

            with torch.inference_mode():
                if device != "cpu":
                    autocast_ctx = torch.autocast(device_type=device, dtype=dtype)
                else:
                    autocast_ctx = torch.cpu.amp.autocast(dtype=dtype)

                with autocast_ctx:
                    outputs = model.generate(
                        **inputs,
                        max_new_tokens=max_tokens,
                        temperature=temperature,
                        do_sample=True,
                    )

            return tokenizer.decode(outputs[0], skip_special_tokens=True)

        if spaces:
            # --- GPU path with ZeroGPU ---
            @spaces.GPU(duration=120)
            def run_once(prompt: str) -> str:
                return _run_once(prompt, device="cuda", dtype=torch.float16)

            text = run_once(prompt)
        else:
            # --- CPU-only fallback ---
            text = _run_once(prompt, device="cpu", dtype=torch.float32)

        yield {
            "id": rid,
            "object": "chat.completion.chunk",
            "created": now,
            "model": MODEL_ID,
            "choices": [
                {"index": 0, "delta": {"content": text}, "finish_reason": "stop"}
            ],
        }


# ---------------- Stub Images Backend ----------------
class StubImagesBackend(ImagesBackend):
    """
    Stub backend for images since HFChatBackend is text-only.
    Returns a transparent 1x1 PNG placeholder.
    """
    async def generate_b64(self, request: Dict[str, Any]) -> str:
        logger.warning("Image generation not supported in HF backend.")
        return (
            "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="
        )