File size: 3,191 Bytes
6e98acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f453fc2
6e98acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# transformers_backend.py
import time, logging
from typing import Any, Dict, AsyncIterable

from transformers import AutoTokenizer, AutoModelForCausalLM
from backends_base import ChatBackend, ImagesBackend
from config import settings

logger = logging.getLogger(__name__)

try:
    import spaces
except ImportError:
    spaces = None


class TransformersChatBackend(ChatBackend):
    """
    Lightweight backend for Hugging Face Spaces (ZeroGPU).
    Reloads model on every request using Transformers, not vLLM.
    """

    async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
        messages = request.get("messages", [])
        prompt = messages[-1]["content"] if messages else "(empty)"

        # Config-driven defaults
        model_id = request.get("model") or settings.LlmHFModelID
        temperature = float(request.get("temperature", settings.LlmTemp or 0.7))
        max_tokens = int(request.get("max_tokens", settings.LlmOpenAICtxSize or 512))

        rid = f"chatcmpl-transformers-{int(time.time())}"
        now = int(time.time())

        # Run inside ZeroGPU lease
        if spaces:
            @spaces.GPU(duration=300)
            def run_once(prompt: str) -> str:
                tokenizer = AutoTokenizer.from_pretrained(model_id)
                model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")

                inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
                outputs = model.generate(
                    **inputs,
                    max_new_tokens=max_tokens,
                    temperature=temperature,
                    do_sample=True,
                )
                return tokenizer.decode(outputs[0], skip_special_tokens=True)
        else:
            def run_once(prompt: str) -> str:
                tokenizer = AutoTokenizer.from_pretrained(model_id)
                model = AutoModelForCausalLM.from_pretrained(model_id)

                inputs = tokenizer(prompt, return_tensors="pt")
                outputs = model.generate(
                    **inputs,
                    max_new_tokens=max_tokens,
                    temperature=temperature,
                    do_sample=True,
                )
                return tokenizer.decode(outputs[0], skip_special_tokens=True)

        try:
            text = run_once(prompt)
            yield {
                "id": rid,
                "object": "chat.completion.chunk",
                "created": now,
                "model": model_id,
                "choices": [
                    {"index": 0, "delta": {"content": text}, "finish_reason": "stop"}
                ],
            }
        except Exception:
            logger.exception("Transformers inference failed")
            raise


class StubImagesBackend(ImagesBackend):
    """
    Image generation stub — returns a transparent PNG placeholder.
    """
    async def generate_b64(self, request: Dict[str, Any]) -> str:
        logger.warning("Image generation not supported in Transformers backend.")
        return (
            "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="
        )