GradLLM / hf_backend.py
johnbridges's picture
.
213e916
raw
history blame
6.75 kB
# hf_backend.py
import time, logging
from contextlib import nullcontext
from typing import Any, Dict, AsyncIterable, Tuple
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from backends_base import ChatBackend, ImagesBackend
from config import settings
logger = logging.getLogger(__name__)
try:
import spaces
from spaces.zero import client as zero_client
except ImportError:
spaces, zero_client = None, None
# --- Model setup ---
MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct"
logger.info(f"Preloading tokenizer for {MODEL_ID} on CPU...")
tokenizer, load_error = None, None
try:
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
trust_remote_code=True,
use_fast=False,
)
except Exception as e:
load_error = f"Failed to load tokenizer: {e}"
logger.exception(load_error)
# ---------------- helpers ----------------
def _pick_cpu_dtype() -> torch.dtype:
if hasattr(torch, "cpu") and hasattr(torch.cpu, "is_bf16_supported"):
try:
if torch.cpu.is_bf16_supported():
logger.info("CPU BF16 supported, will attempt torch.bfloat16")
return torch.bfloat16
except Exception:
pass
logger.info("Falling back to torch.float32 on CPU")
return torch.float32
# ---------------- global cache ----------------
_MODEL_CACHE: Dict[tuple[str, torch.dtype], AutoModelForCausalLM] = {}
def _get_model(device: str, dtype: torch.dtype) -> Tuple[AutoModelForCausalLM, torch.dtype]:
key = (device, dtype)
if key in _MODEL_CACHE:
return _MODEL_CACHE[key], dtype
cfg = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True)
if hasattr(cfg, "quantization_config"):
logger.warning("Removing quantization_config from model config")
delattr(cfg, "quantization_config")
eff_dtype = dtype
try:
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
config=cfg,
torch_dtype=dtype,
trust_remote_code=True,
device_map="auto" if device != "cpu" else {"": "cpu"},
low_cpu_mem_usage=False,
)
except Exception as e:
if device == "cpu" and dtype == torch.bfloat16:
logger.warning(f"BF16 load failed on CPU: {e}. Retrying with FP32.")
eff_dtype = torch.float32
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
config=cfg,
torch_dtype=eff_dtype,
trust_remote_code=True,
device_map={"": "cpu"},
low_cpu_mem_usage=False,
)
else:
raise
if device == "cpu":
model = model.to(device=device, dtype=eff_dtype)
else:
model = model.to(device=device)
model.eval()
_MODEL_CACHE[(device, eff_dtype)] = model
return model, eff_dtype
# ---------------- Chat Backend ----------------
class HFChatBackend(ChatBackend):
async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]:
if load_error:
raise RuntimeError(load_error)
messages = request.get("messages", [])
temperature = float(request.get("temperature", settings.LlmTemp or 0.7))
max_tokens = int(request.get("max_tokens", settings.LlmOpenAICtxSize or 512))
rid = f"chatcmpl-hf-{int(time.time())}"
now = int(time.time())
x_ip_token = request.get("x_ip_token")
if x_ip_token and zero_client:
zero_client.HEADERS["X-IP-Token"] = x_ip_token
logger.debug("Injected X-IP-Token into ZeroGPU headers")
if hasattr(tokenizer, "apply_chat_template") and getattr(tokenizer, "chat_template", None):
try:
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
logger.debug("Applied chat template for prompt")
except Exception as e:
logger.warning(f"Failed to apply chat template: {e}, using fallback")
prompt = messages[-1]["content"] if messages else "(empty)"
else:
prompt = messages[-1]["content"] if messages else "(empty)"
def _run_once(prompt: str, device: str, req_dtype: torch.dtype) -> str:
model, eff_dtype = _get_model(device, req_dtype)
inputs = tokenizer(prompt, return_tensors="pt")
inputs = {k: v.to(device) if hasattr(v, "to") else v for k, v in inputs.items()}
with torch.inference_mode():
if device != "cpu":
autocast_ctx = torch.autocast(device_type=device, dtype=eff_dtype)
else:
if eff_dtype == torch.bfloat16:
autocast_ctx = torch.cpu.amp.autocast(dtype=torch.bfloat16)
else:
autocast_ctx = nullcontext()
with autocast_ctx:
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
use_cache=True,
)
# Slice: keep only newly generated tokens
input_len = inputs["input_ids"].shape[-1]
generated_ids = outputs[0][input_len:]
text = tokenizer.decode(generated_ids, skip_special_tokens=True).strip()
return text
if spaces:
@spaces.GPU(duration=120)
def run_once(prompt: str) -> str:
if torch.cuda.is_available():
return _run_once(prompt, device="cuda", req_dtype=torch.float16)
return _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
text = run_once(prompt)
else:
text = _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype())
yield {
"id": rid,
"object": "chat.completion.chunk",
"created": now,
"model": MODEL_ID,
"choices": [
{"index": 0, "delta": {"role": "assistant", "content": text}, "finish_reason": "stop"}
],
}
# ---------------- Stub Images Backend ----------------
class StubImagesBackend(ImagesBackend):
async def generate_b64(self, request: Dict[str, Any]) -> str:
logger.warning("Image generation not supported in HF backend.")
return (
"iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="
)