# hf_backend.py import time, logging from typing import Any, Dict, AsyncIterable import torch from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig from backends_base import ChatBackend, ImagesBackend from config import settings logger = logging.getLogger(__name__) try: import spaces from spaces.zero import client as zero_client except ImportError: spaces, zero_client = None, None # --- Model setup --- MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct" logger.info(f"Preloading tokenizer for {MODEL_ID} on CPU...") tokenizer, load_error = None, None try: tokenizer = AutoTokenizer.from_pretrained( MODEL_ID, trust_remote_code=True, use_fast=False, ) except Exception as e: load_error = f"Failed to load tokenizer: {e}" logger.exception(load_error) # ---------------- helpers ---------------- def _pick_cpu_dtype() -> torch.dtype: if hasattr(torch, "cpu") and hasattr(torch.cpu, "is_bf16_supported"): try: if torch.cpu.is_bf16_supported(): logger.info("CPU BF16 supported, will attempt torch.bfloat16") return torch.bfloat16 except Exception: pass logger.info("Falling back to torch.float32 on CPU") return torch.float32 # ---------------- global cache ---------------- _MODEL_CACHE: dict[tuple[str, torch.dtype], AutoModelForCausalLM] = {} def _get_model(device: str, dtype: torch.dtype): key = (device, dtype) if key in _MODEL_CACHE: return _MODEL_CACHE[key] cfg = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True) if hasattr(cfg, "quantization_config"): logger.warning("Removing quantization_config from model config") delattr(cfg, "quantization_config") try: model = AutoModelForCausalLM.from_pretrained( MODEL_ID, config=cfg, torch_dtype=dtype, trust_remote_code=True, device_map="auto" if device != "cpu" else {"": "cpu"}, ) except Exception as e: if device == "cpu" and dtype == torch.bfloat16: logger.warning(f"BF16 load failed on CPU: {e}. Retrying with FP32.") model = AutoModelForCausalLM.from_pretrained( MODEL_ID, config=cfg, torch_dtype=torch.float32, trust_remote_code=True, device_map={"": "cpu"}, ) dtype = torch.float32 else: raise model.eval() _MODEL_CACHE[(device, dtype)] = model return model # ---------------- Chat Backend ---------------- class HFChatBackend(ChatBackend): async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]: if load_error: raise RuntimeError(load_error) messages = request.get("messages", []) temperature = float(request.get("temperature", settings.LlmTemp or 0.7)) max_tokens = int(request.get("max_tokens", settings.LlmOpenAICtxSize or 512)) rid = f"chatcmpl-hf-{int(time.time())}" now = int(time.time()) # --- Inject X-IP-Token into global headers if ZeroGPU is used --- x_ip_token = request.get("x_ip_token") if x_ip_token and zero_client: zero_client.HEADERS["X-IP-Token"] = x_ip_token logger.debug("Injected X-IP-Token into ZeroGPU headers") # Build prompt using chat template if available if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template: try: prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) logger.debug("Applied chat template for prompt") except Exception as e: logger.warning(f"Failed to apply chat template: {e}, using fallback") prompt = messages[-1]["content"] if messages else "(empty)" else: prompt = messages[-1]["content"] if messages else "(empty)" def _run_once(prompt: str, device: str, dtype: torch.dtype) -> str: model = _get_model(device, dtype) inputs = tokenizer(prompt, return_tensors="pt").to(device) with torch.inference_mode(): if device != "cpu": autocast_ctx = torch.autocast(device_type=device, dtype=dtype) else: autocast_ctx = torch.cpu.amp.autocast(dtype=dtype) with autocast_ctx: outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, do_sample=True, ) return tokenizer.decode(outputs[0], skip_special_tokens=True) if spaces: # --- GPU path with ZeroGPU --- @spaces.GPU(duration=120) def run_once(prompt: str) -> str: return _run_once(prompt, device="cuda", dtype=torch.float16) text = run_once(prompt) else: # --- CPU-only fallback with auto dtype detection --- dtype = _pick_cpu_dtype() text = _run_once(prompt, device="cpu", dtype=dtype) yield { "id": rid, "object": "chat.completion.chunk", "created": now, "model": MODEL_ID, "choices": [ {"index": 0, "delta": {"content": text}, "finish_reason": "stop"} ], } # ---------------- Stub Images Backend ---------------- class StubImagesBackend(ImagesBackend): """ Stub backend for images since HFChatBackend is text-only. Returns a transparent 1x1 PNG placeholder. """ async def generate_b64(self, request: Dict[str, Any]) -> str: logger.warning("Image generation not supported in HF backend.") return ( "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII=" )