import time, logging, json, asyncio from contextlib import nullcontext from typing import Any, Dict, AsyncIterable, Tuple import torch from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig from backends_base import ChatBackend, ImagesBackend from config import settings logger = logging.getLogger(__name__) def _snippet(txt: str, n: int = 800) -> str: if not isinstance(txt, str): return f"" return txt if len(txt) <= n else txt[:n] + f"... <+{len(txt)-n} chars>" try: import spaces from spaces.zero import client as zero_client except ImportError: spaces, zero_client = None, None MODEL_ID = settings.LlmHFModelID or "Qwen/Qwen2.5-1.5B-Instruct" logger.info(f"[init] MODEL_ID={MODEL_ID}") tokenizer, load_error = None, None try: tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, use_fast=False) has_template = hasattr(tokenizer, "apply_chat_template") and getattr(tokenizer, "chat_template", None) logger.info(f"[init] tokenizer loaded. chat_template={'yes' if has_template else 'no'}") except Exception as e: load_error = f"Failed to load tokenizer: {e}" logger.exception(load_error) def probe_bf16_runtime() -> bool: """Check if BF16 is both reported and actually used in ops on CPU.""" if not (hasattr(torch, "cpu") and hasattr(torch.cpu, "is_bf16_supported")): return False if not torch.cpu.is_bf16_supported(): return False try: a = torch.randn(16, 16, dtype=torch.bfloat16) b = torch.randn(16, 16, dtype=torch.bfloat16) c = a @ b return c.dtype == torch.bfloat16 except Exception: return False def _pick_cpu_dtype() -> torch.dtype: try: if probe_bf16_runtime(): logger.info("[dtype] Verified BF16 execution on CPU -> torch.bfloat16") return torch.bfloat16 except Exception as e: logger.warning(f"[dtype] BF16 probe failed: {e}") logger.info("[dtype] fallback -> torch.float32") return torch.float32 # Log CPU dtype capability at startup CPU_DTYPE = _pick_cpu_dtype() logger.info(f"[init] Default CPU dtype = {CPU_DTYPE}") _MODEL_CACHE: Dict[tuple[str, torch.dtype], AutoModelForCausalLM] = {} def _get_model(device: str, dtype: torch.dtype) -> Tuple[AutoModelForCausalLM, torch.dtype]: key = (device, dtype) if key in _MODEL_CACHE: logger.info(f"[cache] hit model for device={device} dtype={dtype}") return _MODEL_CACHE[key], dtype logger.info(f"[load] begin from_pretrained device={device} dtype={dtype}") cfg = AutoConfig.from_pretrained(MODEL_ID, trust_remote_code=True) if hasattr(cfg, "quantization_config"): logger.warning("[load] removing quantization_config from config to avoid FP8 path") delattr(cfg, "quantization_config") eff_dtype = dtype try: model = AutoModelForCausalLM.from_pretrained( MODEL_ID, config=cfg, torch_dtype=dtype, trust_remote_code=True, device_map="auto" if device != "cpu" else {"": "cpu"}, low_cpu_mem_usage=False, ) except Exception as e: if device == "cpu" and dtype == torch.bfloat16: logger.warning(f"[load] BF16 load failed on CPU ({e}). retry FP32.") eff_dtype = torch.float32 model = AutoModelForCausalLM.from_pretrained( MODEL_ID, config=cfg, torch_dtype=eff_dtype, trust_remote_code=True, device_map={"": "cpu"}, low_cpu_mem_usage=False, ) else: logger.exception("[load] from_pretrained failed") raise if device == "cpu": logger.info(f"[load] casting all weights to CPU dtype={eff_dtype}") model = model.to(device=device, dtype=eff_dtype) else: logger.info(f"[load] moving model to device={device} (no recast)") model = model.to(device=device) model.eval() try: first_dtype = next(model.parameters()).dtype logger.info(f"[load] ready. effective_dtype={eff_dtype} first_param_dtype={first_dtype}") except Exception: logger.info(f"[load] ready. effective_dtype={eff_dtype} (param dtype probe failed)") _MODEL_CACHE[(device, eff_dtype)] = model return model, eff_dtype def _max_context(model, tokenizer) -> int: mc = getattr(getattr(model, "config", None), "max_position_embeddings", None) if isinstance(mc, int) and mc > 0: return mc tk = getattr(tokenizer, "model_max_length", None) if isinstance(tk, int) and tk > 0 and tk < 10**12: return tk return 32768 # safe default for Qwen3 def _build_inputs_with_truncation(prompt: str, device: str, max_new_tokens: int, model, tokenizer): toks = tokenizer(prompt, return_tensors="pt", add_special_tokens=False) input_ids = toks["input_ids"] attn = toks.get("attention_mask", None) ctx = _max_context(model, tokenizer) limit = max(8, ctx - max_new_tokens) in_len = input_ids.shape[-1] if in_len > limit: cut = in_len - limit input_ids = input_ids[:, -limit:] if attn is not None: attn = attn[:, -limit:] logger.warning(f"[truncate] prompt_tokens={in_len} > limit={limit}. truncated_left_by={cut} to fit ctx={ctx}, new_input={input_ids.shape[-1]}, max_new={max_new_tokens}") inputs = {"input_ids": input_ids} if attn is not None: inputs["attention_mask"] = attn inputs = {k: v.to(device) if hasattr(v, "to") else v for k, v in inputs.items()} return inputs, in_len, ctx, limit class HFChatBackend(ChatBackend): async def stream(self, request: Dict[str, Any]) -> AsyncIterable[Dict[str, Any]]: if load_error: raise RuntimeError(load_error) messages = request.get("messages", []) tools = request.get("tools") temperature = float(request.get("temperature", settings.LlmTemp or 0.3)) req_max_tokens = int(request.get("max_tokens", settings.LlmOpenAICtxSize or 32000)) rid = f"chatcmpl-hf-{int(time.time())}" now = int(time.time()) logger.info(f"[req] rid={rid} temp={temperature} req_max_tokens={req_max_tokens} " f"msgs={len(messages)} tools={'yes' if tools else 'no'} " f"spaces={'yes' if spaces else 'no'} cuda={'yes' if torch.cuda.is_available() else 'no'}") x_ip_token = request.get("x_ip_token") if x_ip_token and zero_client: zero_client.HEADERS["X-IP-Token"] = x_ip_token logger.info("[req] injected X-IP-Token into ZeroGPU headers") if hasattr(tokenizer, "apply_chat_template") and getattr(tokenizer, "chat_template", None): try: prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) logger.info(f"[prompt] built via chat_template. len={len(prompt)}\n{_snippet(prompt, 800)}") except Exception as e: logger.warning(f"[prompt] chat_template failed -> fallback. err={e}") prompt = messages[-1]["content"] if messages else "(empty)" logger.info(f"[prompt] fallback content len={len(prompt)}\n{_snippet(prompt, 800)}") else: prompt = messages[-1]["content"] if messages else "(empty)" logger.info(f"[prompt] no template. using last user text len={len(prompt)}\n{_snippet(prompt, 800)}") def _run_once(prompt: str, device: str, req_dtype: torch.dtype) -> str: model, eff_dtype = _get_model(device, req_dtype) max_new_tokens = req_max_tokens inputs, orig_in_len, ctx, limit = _build_inputs_with_truncation(prompt, device, max_new_tokens, model, tokenizer) logger.info(f"[gen] device={device} dtype={eff_dtype} input_tokens={inputs['input_ids'].shape[-1]} " f"(orig={orig_in_len}) max_ctx={ctx} limit_for_input={limit} max_new_tokens={max_new_tokens}") do_sample = temperature > 1e-6 temp = max(1e-5, temperature) if do_sample else 0.0 eos_id = tokenizer.eos_token_id pad_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else eos_id with torch.inference_mode(): if device != "cpu": autocast_ctx = torch.autocast(device_type=device, dtype=eff_dtype) else: autocast_ctx = torch.cpu.amp.autocast(dtype=torch.bfloat16) if eff_dtype == torch.bfloat16 else nullcontext() gen_kwargs = dict( max_new_tokens=max_new_tokens, temperature=temp, do_sample=do_sample, use_cache=True, eos_token_id=eos_id, pad_token_id=pad_id, ) logger.info(f"[gen] kwargs={gen_kwargs}") with autocast_ctx: outputs = model.generate(**inputs, **gen_kwargs) input_len = inputs["input_ids"].shape[-1] generated_ids = outputs[0][input_len:] logger.info(f"[gen] new_tokens={generated_ids.shape[-1]}") text = tokenizer.decode(generated_ids, skip_special_tokens=True).strip() logger.info(f"[gen] text len={len(text)}\n{_snippet(text, 1200)}") return text if spaces: @spaces.GPU(duration=120) def run_once_sync(prompt: str) -> str: if torch.cuda.is_available(): logger.info("[path] ZeroGPU + CUDA") return _run_once(prompt, device="cuda", req_dtype=torch.float16) logger.info("[path] ZeroGPU but no CUDA -> CPU fallback") return _run_once(prompt, device="cpu", req_dtype=_pick_cpu_dtype()) text = await asyncio.to_thread(run_once_sync, prompt) else: logger.info("[path] CPU-only runtime") text = await asyncio.to_thread(_run_once, prompt, "cpu", _pick_cpu_dtype()) chunk = { "id": rid, "object": "chat.completion.chunk", "created": now, "model": MODEL_ID, "choices": [ {"index": 0, "delta": {"role": "assistant", "content": text}, "finish_reason": "stop"} ], } logger.info(f"[out] chunk summary -> id={rid} content_len={len(text)}") yield chunk class StubImagesBackend(ImagesBackend): async def generate_b64(self, request: Dict[str, Any]) -> str: logger.warning("Image generation not supported in HF backend.") return "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="