PromeMobile / app.py
Neu256's picture
Update app.py
b78d02c verified
import gradio as gr
import torch
import numpy as np
from model import Transformer
from transformers import PreTrainedTokenizerFast
from tokenizers import Tokenizer
from utils import (
DEVICE,
DROPOUT,
NUM_EMBED,
NUM_HEAD,
NUM_LAYER,
encode,
decode
)
tokenizer = PreTrainedTokenizerFast(tokenizer_object=Tokenizer.from_file("BPE.json"))
vocab_size = tokenizer.vocab_size
# train a new model
model = Transformer(
vocab_size=vocab_size,
num_embed=NUM_EMBED,
num_heads=NUM_HEAD,
num_layers=NUM_LAYER,
dropout=DROPOUT
)
# load model to GPU if available
m = model.to(DEVICE)
# print the number of parameters in the model
m.load_state_dict(torch.load("base_model.pth", map_location=torch.device(DEVICE)))
m.eval()
#print(
# "Model with {:.2f}M parameters".format(sum(p.numel() for p in m.parameters()) / 1e6)
#)
def model_generate(text, number_of_new_token, temperature, top_p):
print(text)
context = encode(str(text), tokenizer).unsqueeze(0).to(DEVICE)
gen = decode(enc_sec=m.generate(idx=context, max_new_tokens=number_of_new_token, temperature = temperature, top_p = top_p), tokenizer=tokenizer)
print(gen)
return gen
iface = gr.Interface(fn=model_generate, inputs=["text", gr.Slider(10, 1000), gr.Slider(0, 1, value=0.9, step = 0.05), gr.Slider(0, 1, value=0.95, step = 0.05)], outputs="text")
iface.launch()