Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from PIL import Image | |
| from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
| from qwen_vl_utils import process_vision_info | |
| def load_model_and_processor(): | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| "Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto" | |
| ) | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
| return model, processor | |
| st.title('Image OCR and RAG') | |
| with st.sidebar: | |
| st.header("Upload your image") | |
| uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| st.success("Image uploaded successfully!") | |
| model, processor = load_model_and_processor() | |
| if uploaded_file is not None: | |
| image = Image.open(uploaded_file) | |
| st.image(image, caption="Uploaded Image", use_column_width=True) | |
| try: | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": image, | |
| }, | |
| {"type": "text", "text": "Extract all the text present in the image and give the output in JSON format"}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cpu") | |
| # Generate output using the model | |
| generated_ids = model.generate(**inputs, max_new_tokens=300) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| # Display the extracted text in JSON format | |
| st.subheader("Extracted Text in JSON Format:") | |
| st.json(output_text[0]) | |
| except Exception as e: | |
| st.error(f"An error occurred: {str(e)}") | |
| else: | |
| st.write("Please upload an image from the sidebar") |