File size: 3,513 Bytes
e4e4574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""Data models for the HuggingFace Crypto Data Engine"""
from __future__ import annotations
from typing import List, Optional
from pydantic import BaseModel, Field
from datetime import datetime


class OHLCV(BaseModel):
    """OHLCV candlestick data model"""
    timestamp: int = Field(..., description="Unix timestamp in milliseconds")
    open: float = Field(..., description="Opening price")
    high: float = Field(..., description="Highest price")
    low: float = Field(..., description="Lowest price")
    close: float = Field(..., description="Closing price")
    volume: float = Field(..., description="Trading volume")


class OHLCVResponse(BaseModel):
    """Response model for OHLCV endpoint"""
    success: bool = True
    data: List[OHLCV]
    symbol: str
    interval: str
    count: int
    source: str
    timestamp: Optional[int] = None


class Price(BaseModel):
    """Price data model"""
    symbol: str
    name: str
    price: float
    priceUsd: float
    change1h: Optional[float] = None
    change24h: Optional[float] = None
    change7d: Optional[float] = None
    volume24h: Optional[float] = None
    marketCap: Optional[float] = None
    rank: Optional[int] = None
    lastUpdate: str


class PricesResponse(BaseModel):
    """Response model for prices endpoint"""
    success: bool = True
    data: List[Price]
    timestamp: int
    source: str


class FearGreedIndex(BaseModel):
    """Fear & Greed Index model"""
    value: int = Field(..., ge=0, le=100)
    classification: str
    timestamp: str


class NewsSentiment(BaseModel):
    """News sentiment aggregation"""
    bullish: int = 0
    bearish: int = 0
    neutral: int = 0
    total: int = 0


class OverallSentiment(BaseModel):
    """Overall sentiment score"""
    sentiment: str  # "bullish", "bearish", "neutral"
    score: int = Field(..., ge=0, le=100)
    confidence: float = Field(..., ge=0, le=1)


class SentimentData(BaseModel):
    """Sentiment data model"""
    fearGreed: FearGreedIndex
    news: NewsSentiment
    overall: OverallSentiment


class SentimentResponse(BaseModel):
    """Response model for sentiment endpoint"""
    success: bool = True
    data: SentimentData
    timestamp: int


class MarketOverview(BaseModel):
    """Market overview data model"""
    totalMarketCap: float
    totalVolume24h: float
    btcDominance: float
    ethDominance: float
    activeCoins: int
    topGainers: List[Price] = []
    topLosers: List[Price] = []
    trending: List[Price] = []


class MarketOverviewResponse(BaseModel):
    """Response model for market overview endpoint"""
    success: bool = True
    data: MarketOverview
    timestamp: int


class ProviderHealth(BaseModel):
    """Provider health status"""
    name: str
    status: str  # "online", "offline", "degraded"
    latency: Optional[int] = None  # milliseconds
    lastCheck: str
    errorMessage: Optional[str] = None


class CacheInfo(BaseModel):
    """Cache statistics"""
    size: int
    hitRate: float


class HealthResponse(BaseModel):
    """Response model for health endpoint"""
    status: str  # "healthy", "degraded", "unhealthy"
    uptime: int  # seconds
    version: str
    providers: List[ProviderHealth]
    cache: CacheInfo


class ErrorResponse(BaseModel):
    """Error response model"""
    success: bool = False
    error: ErrorDetail
    timestamp: int


class ErrorDetail(BaseModel):
    """Error detail"""
    code: str
    message: str
    details: Optional[dict] = None
    retryAfter: Optional[int] = None