Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,13 +19,7 @@ speaker_model = EncoderClassifier.from_hparams(
|
|
| 19 |
savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb")
|
| 20 |
)
|
| 21 |
|
| 22 |
-
|
| 23 |
-
with torch.no_grad():
|
| 24 |
-
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
|
| 25 |
-
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
| 26 |
-
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
|
| 27 |
-
return speaker_embeddings
|
| 28 |
-
|
| 29 |
# Load a sample from the dataset for speaker embedding
|
| 30 |
try:
|
| 31 |
dataset = load_dataset("Sajjo/bangala_data_v3", split="train", trust_remote_code=True)
|
|
@@ -37,6 +31,13 @@ except Exception as e:
|
|
| 37 |
# Use a random speaker embedding as fallback
|
| 38 |
speaker_embedding = torch.randn(1, 512)
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
def text_to_speech(text):
|
| 41 |
# Clean up text
|
| 42 |
replacements = [
|
|
|
|
| 19 |
savedir=os.path.join("/tmp", "speechbrain/spkrec-xvect-voxceleb")
|
| 20 |
)
|
| 21 |
|
| 22 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# Load a sample from the dataset for speaker embedding
|
| 24 |
try:
|
| 25 |
dataset = load_dataset("Sajjo/bangala_data_v3", split="train", trust_remote_code=True)
|
|
|
|
| 31 |
# Use a random speaker embedding as fallback
|
| 32 |
speaker_embedding = torch.randn(1, 512)
|
| 33 |
|
| 34 |
+
def create_speaker_embedding(waveform):
|
| 35 |
+
with torch.no_grad():
|
| 36 |
+
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
|
| 37 |
+
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
|
| 38 |
+
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
|
| 39 |
+
return speaker_embeddings
|
| 40 |
+
|
| 41 |
def text_to_speech(text):
|
| 42 |
# Clean up text
|
| 43 |
replacements = [
|