Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import os | |
| import gradio as gr | |
| os.environ["WANDB_DISABLED"] = "true" | |
| from datasets import load_dataset, load_metric | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModelForSequenceClassification, | |
| AutoTokenizer, | |
| TrainingArguments, | |
| logging, | |
| pipeline | |
| ) | |
| # model_name = | |
| # tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # config = AutoConfig.from_pretrained(model_name) | |
| # pipe = pipeline("text-classification") | |
| # pipe("This restaurant is awesome") | |
| # Question answering pipeline, specifying the checkpoint identifier | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| pretrained_model_name_or_path= "thak123/Cro-Frida", | |
| num_labels=3, | |
| ) | |
| analyzer = pipeline( | |
| "sentiment-analysis", model=model, tokenizer="EMBEDDIA/crosloengual-bert" | |
| ) | |
| def predict_sentiment(x): | |
| return analyzer(x) | |
| interface = gr.Interface( | |
| fn=predict_sentiment, | |
| inputs='text', | |
| outputs=['label'], | |
| title='Latvian Twitter Sentiment Analysis', | |
| examples= ["Es mīlu Tevi","Es ienīstu kafiju"], | |
| description='Get the positive/neutral/negative sentiment for the given input.' | |
| ) | |
| interface.launch(inline = False) | |