Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import os | |
| import gradio as gr | |
| import xgboost as xgb | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| import pickle | |
| os.environ["WANDB_DISABLED"] = "true" | |
| label2id = { | |
| 0: "negative", | |
| 1: "neutral", | |
| 2: "positive" | |
| } | |
| model_file_name = "xgb_reg.pkl" | |
| vectorizer_file_name = 'vectorizer.pk' | |
| #load | |
| xgb_model_loaded = pickle.load(open(model_file_name, "rb")) | |
| vectorizer_loaded = pickle.load(open(vectorizer_file_name, "rb")) | |
| # predict | |
| def predict_sentiment(predict_texts): | |
| predictions_loaded = xgb_model_loaded.predict(vectorizer_loaded.transform([predict_texts])) | |
| print(predictions_loaded) | |
| return label2id[predictions_loaded[0]] | |
| interface = gr.Interface( | |
| fn=predict_sentiment, | |
| inputs='text', | |
| outputs=['text'], | |
| title='Croatian Movie reviews Sentiment Analysis', | |
| examples= ["Volim kavu","Ne volim kavu"], | |
| description='Get the positive/neutral/negative sentiment for the given input.' | |
| ) | |
| interface.launch(inline = False) | |