Spaces:
Runtime error
Runtime error
Commit
·
302efca
1
Parent(s):
a317320
gen
Browse files
app.py
CHANGED
|
@@ -8,43 +8,69 @@ from torch.distributions.categorical import Categorical
|
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
|
| 9 |
model = AutoModelForMaskedLM.from_pretrained("TianlaiChen/PepMLM-650M")
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
peptide_length = int(peptide_length)
|
| 15 |
top_k = int(top_k)
|
| 16 |
-
|
| 17 |
-
masked_peptide = '<mask>' * peptide_length
|
| 18 |
-
input_sequence = protein_seq + masked_peptide
|
| 19 |
-
inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
return generated_peptide.replace(' ', '')
|
| 34 |
|
|
|
|
|
|
|
|
|
|
| 35 |
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Define the Gradio interface
|
| 38 |
interface = gr.Interface(
|
| 39 |
fn=generate_peptide,
|
| 40 |
inputs=[
|
| 41 |
-
gr.Textbox(label="Protein Sequence", info
|
| 42 |
-
gr.Slider(3, 50, value=15, label="Peptide Length", step=1,
|
| 43 |
-
info='Default value is
|
| 44 |
-
gr.
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
)
|
| 49 |
|
| 50 |
-
interface.launch(
|
|
|
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
|
| 9 |
model = AutoModelForMaskedLM.from_pretrained("TianlaiChen/PepMLM-650M")
|
| 10 |
|
| 11 |
+
def compute_pseudo_perplexity(model, tokenizer, protein_seq, binder_seq):
|
| 12 |
+
sequence = protein_seq + binder_seq
|
| 13 |
+
tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)
|
| 14 |
|
| 15 |
+
# Create a mask for the binder sequence
|
| 16 |
+
binder_mask = torch.zeros(tensor_input.shape).to(model.device)
|
| 17 |
+
binder_mask[0, -len(binder_seq)-1:-1] = 1
|
| 18 |
+
|
| 19 |
+
# Mask the binder sequence in the input and create labels
|
| 20 |
+
masked_input = tensor_input.clone().masked_fill_(binder_mask.bool(), tokenizer.mask_token_id)
|
| 21 |
+
labels = tensor_input.clone().masked_fill_(~binder_mask.bool(), -100)
|
| 22 |
+
|
| 23 |
+
with torch.no_grad():
|
| 24 |
+
loss = model(masked_input, labels=labels).loss
|
| 25 |
+
return np.exp(loss.item())
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def generate_peptide(protein_seq, peptide_length, top_k, num_binders):
|
| 29 |
|
| 30 |
peptide_length = int(peptide_length)
|
| 31 |
top_k = int(top_k)
|
| 32 |
+
num_binders = int(num_binders)
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
binders_with_ppl = []
|
| 35 |
+
|
| 36 |
+
for _ in range(num_binders):
|
| 37 |
+
# Generate binder
|
| 38 |
+
masked_peptide = '<mask>' * peptide_length
|
| 39 |
+
input_sequence = protein_seq + masked_peptide
|
| 40 |
+
inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)
|
| 41 |
+
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
logits = model(**inputs).logits
|
| 44 |
+
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
|
| 45 |
+
logits_at_masks = logits[0, mask_token_indices]
|
| 46 |
|
| 47 |
+
# Apply top-k sampling
|
| 48 |
+
top_k_logits, top_k_indices = logits_at_masks.topk(top_k, dim=-1)
|
| 49 |
+
probabilities = torch.nn.functional.softmax(top_k_logits, dim=-1)
|
| 50 |
+
predicted_indices = Categorical(probabilities).sample()
|
| 51 |
+
predicted_token_ids = top_k_indices.gather(-1, predicted_indices.unsqueeze(-1)).squeeze(-1)
|
| 52 |
|
| 53 |
+
generated_binder = tokenizer.decode(predicted_token_ids, skip_special_tokens=True).replace(' ', '')
|
|
|
|
| 54 |
|
| 55 |
+
# Compute PPL for the generated binder
|
| 56 |
+
ppl_value = compute_pseudo_perplexity(model, tokenizer, protein_seq, generated_binder)
|
| 57 |
+
binders_with_ppl.append((generated_binder, ppl_value))
|
| 58 |
|
| 59 |
+
# Formatting the output
|
| 60 |
+
output = "\n".join([f"Binder: {binder}, PPL: {ppl:.2f}" for binder, ppl in binders_with_ppl])
|
| 61 |
+
return output
|
| 62 |
|
| 63 |
# Define the Gradio interface
|
| 64 |
interface = gr.Interface(
|
| 65 |
fn=generate_peptide,
|
| 66 |
inputs=[
|
| 67 |
+
gr.Textbox(label="Protein Sequence", info="Enter protein sequence here", type="text"),
|
| 68 |
+
gr.Slider(3, 50, value=15, label="Peptide Length", step=1, info='Default value is 15'),
|
| 69 |
+
gr.Slider(1, 10, value=3, label="Top K Value", step=1, info='Default value is 3'),
|
| 70 |
+
gr.Dropdown(choices=[1, 2, 4, 8, 16, 32], label="Number of Binders", value=4)
|
| 71 |
+
],
|
| 72 |
+
outputs=gr.outputs.Textbox(label="Binders (with Perplexity)"),
|
| 73 |
+
title="PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling"
|
| 74 |
)
|
| 75 |
|
| 76 |
+
interface.launch()
|