Spaces:
Runtime error
Runtime error
Commit
·
4ed0ba3
1
Parent(s):
9b1cba9
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,93 +1,105 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 3 |
-
import torch
|
| 4 |
-
from torch.distributions.categorical import Categorical
|
| 5 |
-
import numpy as np
|
| 6 |
-
import pandas as pd
|
| 7 |
-
|
| 8 |
-
# Load the model and tokenizer
|
| 9 |
-
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
|
| 10 |
-
model = AutoModelForMaskedLM.from_pretrained("TianlaiChen/PepMLM-650M")
|
| 11 |
-
|
| 12 |
-
def compute_pseudo_perplexity(model, tokenizer, protein_seq, binder_seq):
|
| 13 |
-
sequence = protein_seq + binder_seq
|
| 14 |
-
tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
)
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
interface.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
| 3 |
+
import torch
|
| 4 |
+
from torch.distributions.categorical import Categorical
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
# Load the model and tokenizer
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained("TianlaiChen/PepMLM-650M")
|
| 10 |
+
model = AutoModelForMaskedLM.from_pretrained("TianlaiChen/PepMLM-650M")
|
| 11 |
+
|
| 12 |
+
def compute_pseudo_perplexity(model, tokenizer, protein_seq, binder_seq):
|
| 13 |
+
sequence = protein_seq + binder_seq
|
| 14 |
+
tensor_input = tokenizer.encode(sequence, return_tensors='pt').to(model.device)
|
| 15 |
+
total_loss = 0
|
| 16 |
+
|
| 17 |
+
# Loop through each token in the binder sequence
|
| 18 |
+
for i in range(-len(binder_seq)-1, -1):
|
| 19 |
+
# Create a copy of the original tensor
|
| 20 |
+
masked_input = tensor_input.clone()
|
| 21 |
+
|
| 22 |
+
# Mask one token at a time
|
| 23 |
+
masked_input[0, i] = tokenizer.mask_token_id
|
| 24 |
+
# Create labels
|
| 25 |
+
labels = torch.full(tensor_input.shape, -100).to(model.device)
|
| 26 |
+
labels[0, i] = tensor_input[0, i]
|
| 27 |
+
|
| 28 |
+
# Get model prediction and loss
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
outputs = model(masked_input, labels=labels)
|
| 31 |
+
total_loss += outputs.loss.item()
|
| 32 |
+
|
| 33 |
+
# Calculate the average loss
|
| 34 |
+
avg_loss = total_loss / len(binder_seq)
|
| 35 |
+
|
| 36 |
+
# Calculate pseudo perplexity
|
| 37 |
+
pseudo_perplexity = np.exp(avg_loss)
|
| 38 |
+
return pseudo_perplexity
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def generate_peptide(protein_seq, peptide_length, top_k, num_binders):
|
| 42 |
+
|
| 43 |
+
peptide_length = int(peptide_length)
|
| 44 |
+
top_k = int(top_k)
|
| 45 |
+
num_binders = int(num_binders)
|
| 46 |
+
|
| 47 |
+
binders_with_ppl = []
|
| 48 |
+
|
| 49 |
+
for _ in range(num_binders):
|
| 50 |
+
# Generate binder
|
| 51 |
+
masked_peptide = '<mask>' * peptide_length
|
| 52 |
+
input_sequence = protein_seq + masked_peptide
|
| 53 |
+
inputs = tokenizer(input_sequence, return_tensors="pt").to(model.device)
|
| 54 |
+
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
logits = model(**inputs).logits
|
| 57 |
+
mask_token_indices = (inputs["input_ids"] == tokenizer.mask_token_id).nonzero(as_tuple=True)[1]
|
| 58 |
+
logits_at_masks = logits[0, mask_token_indices]
|
| 59 |
+
|
| 60 |
+
# Apply top-k sampling
|
| 61 |
+
top_k_logits, top_k_indices = logits_at_masks.topk(top_k, dim=-1)
|
| 62 |
+
probabilities = torch.nn.functional.softmax(top_k_logits, dim=-1)
|
| 63 |
+
predicted_indices = Categorical(probabilities).sample()
|
| 64 |
+
predicted_token_ids = top_k_indices.gather(-1, predicted_indices.unsqueeze(-1)).squeeze(-1)
|
| 65 |
+
|
| 66 |
+
generated_binder = tokenizer.decode(predicted_token_ids, skip_special_tokens=True).replace(' ', '')
|
| 67 |
+
|
| 68 |
+
# Compute PPL for the generated binder
|
| 69 |
+
ppl_value = compute_pseudo_perplexity(model, tokenizer, protein_seq, generated_binder)
|
| 70 |
+
|
| 71 |
+
# Add the generated binder and its PPL to the results list
|
| 72 |
+
binders_with_ppl.append([generated_binder, ppl_value])
|
| 73 |
+
|
| 74 |
+
# Convert the list of lists to a pandas dataframe
|
| 75 |
+
df = pd.DataFrame(binders_with_ppl, columns=["Binder", "Perplexity"])
|
| 76 |
+
|
| 77 |
+
# Save the dataframe to a CSV file
|
| 78 |
+
output_filename = "output.csv"
|
| 79 |
+
df.to_csv(output_filename, index=False)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
return binders_with_ppl, output_filename
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# Define the Gradio interface
|
| 86 |
+
interface = gr.Interface(
|
| 87 |
+
fn=generate_peptide,
|
| 88 |
+
inputs=[
|
| 89 |
+
gr.Textbox(label="Protein Sequence", info="Enter protein sequence here", type="text"),
|
| 90 |
+
gr.Slider(3, 50, value=15, label="Peptide Length", step=1, info='Default value is 15'),
|
| 91 |
+
gr.Slider(1, 10, value=3, label="Top K Value", step=1, info='Default value is 3'),
|
| 92 |
+
gr.Dropdown(choices=[1, 2, 4, 8, 16, 32], label="Number of Binders", value=1)
|
| 93 |
+
],
|
| 94 |
+
outputs=[
|
| 95 |
+
gr.Dataframe(
|
| 96 |
+
headers=["Binder", "Perplexity"],
|
| 97 |
+
datatype=["str", "number"],
|
| 98 |
+
col_count=(2, "fixed")
|
| 99 |
+
),
|
| 100 |
+
gr.outputs.File(label="Download CSV")
|
| 101 |
+
],
|
| 102 |
+
title="PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
interface.launch()
|