File size: 46,690 Bytes
56f497c
70ebea3
a103fac
2bbff53
 
cae0132
4b799e0
7748528
56f497c
2bbff53
cae0132
7748528
4045d37
d99f102
b4c4fbe
86562c6
37ea4b9
f4d39b3
4045d37
48ec1f2
83386a6
 
ed3f7df
53f9025
3e539e5
0e657e3
48ec1f2
 
a50fb3c
 
ec15505
67ad314
2f20105
3799aae
48ec1f2
 
2f20105
48ec1f2
37ea4b9
e13fba3
2cc0ddd
 
ecf7a0d
2cc0ddd
fe83f98
2cc0ddd
 
 
 
 
ecf7a0d
2cc0ddd
310e819
 
 
 
 
 
 
 
0b61062
f434999
92c9491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f434999
e389a2d
 
 
 
 
87d4bd8
2f20105
e389a2d
 
2cc0ddd
e389a2d
4b799e0
e389a2d
fe11d17
bd9f56c
 
 
 
545a45a
bd9f56c
 
 
67ad314
ecf7a0d
 
 
 
 
 
 
 
 
 
 
 
48ec1f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67ad314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631e80d
2f20105
 
 
 
 
bd9f56c
 
 
 
 
 
631e80d
 
 
bd9f56c
 
 
 
 
 
 
 
545a45a
bd9f56c
545a45a
145a71f
 
bd9f56c
 
67ad314
f434999
09be962
 
f434999
fe11d17
f434999
 
 
 
fe11d17
67ad314
 
 
 
 
09be962
67ad314
09be962
bd5351d
545a45a
bd5351d
 
 
5b81536
bd5351d
 
5b81536
bd5351d
 
 
b7bb052
545a45a
bd5351d
545a45a
bd5351d
 
545a45a
5b81536
ad27d14
f434999
d99f102
bd9f56c
 
 
 
37d32ba
ee8f0d6
37d32ba
ee8f0d6
 
37d32ba
 
ee8f0d6
 
 
 
 
 
 
 
 
 
 
bd9f56c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67ad314
 
37d32ba
67ad314
 
37d32ba
67ad314
bd9f56c
 
67ad314
37d32ba
67ad314
 
bd9f56c
 
 
 
545a45a
bd9f56c
 
 
 
 
 
 
 
545a45a
bd9f56c
545a45a
bd9f56c
 
 
2040a36
d99f102
87d4bd8
0e657e3
 
 
d99f102
0448b0f
f434999
 
 
 
87d4bd8
f434999
545a45a
f434999
 
 
87d4bd8
f434999
545a45a
f434999
87d4bd8
f4d39b3
f434999
 
2f20105
ed9f776
 
 
 
 
95ed8e4
ed9f776
95ed8e4
ed9f776
 
 
 
 
21077c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92c9491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec5a10c
2f20105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92c9491
 
 
03dd083
1f3055b
92c9491
 
 
 
 
 
 
 
03dd083
1f3055b
 
92c9491
 
 
7d0b5b1
92c9491
 
 
 
f15fe8d
 
92c9491
 
 
0e657e3
 
 
545a45a
 
0e657e3
 
 
31f90eb
 
545a45a
0e657e3
 
545a45a
 
0e657e3
 
 
 
31f90eb
f434999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a64284b
 
e5ffc74
f434999
 
 
 
 
 
 
 
 
 
 
 
3b73549
f434999
 
 
 
 
 
 
c067a87
f434999
 
252c640
 
f434999
 
 
 
 
 
 
08b54a5
f434999
a50fb3c
d63ee61
 
 
 
 
 
 
 
 
 
 
 
 
 
0d30e3d
2cc0ddd
70ebea3
f434999
135432f
481d87b
135432f
481d87b
135432f
f434999
 
481d87b
135432f
 
481d87b
 
4dfd4b1
481d87b
 
 
 
135432f
481d87b
4045d37
 
f434999
8a76dba
722308d
 
 
6a1b421
a862461
 
95ed8e4
148dd30
2040a36
 
d99f102
87d4bd8
f434999
148dd30
 
f434999
bd9f56c
1810ebb
bd9f56c
5fc3c5d
148dd30
52193d6
309f943
bd9f56c
 
 
ecf7a0d
 
 
8be3c99
92c9491
631e80d
 
 
ec15505
48ec1f2
 
 
ec15505
 
67ad314
 
 
 
2f20105
 
 
d836ba8
f434999
21077c7
148dd30
f434999
ed9f776
 
e0efacd
148dd30
 
f434999
148dd30
 
f434999
148dd30
 
f434999
92c9491
9b5378d
148dd30
f434999
310e819
148dd30
f434999
3e539e5
148dd30
f434999
bd9f56c
0e657e3
31f90eb
0e657e3
 
31f90eb
0e657e3
92c9491
f434999
92c9491
 
f434999
92c9491
148dd30
f434999
e389a2d
306697e
f434999
0d30e3d
bd9f56c
 
145a71f
bd9f56c
145a71f
bd9f56c
0d30e3d
d63ee61
e389a2d
4e0ca09
 
53f9025
e389a2d
53f9025
56f497c
2169b22
4e0ca09
2169b22
 
0b2c6b5
9b5a331
edf0a26
 
4b799e0
edf0a26
 
5b50e0a
edf0a26
4b799e0
1810ebb
ed3f7df
 
 
 
 
145a71f
09be962
37d32ba
 
 
edf0a26
08b54a5
edf0a26
4b799e0
bc01b39
1ac6eb0
 
37d32ba
 
1ac6eb0
 
 
 
 
 
 
 
56f497c
1ac6eb0
 
 
7c6021f
 
1ac6eb0
56f497c
1ac6eb0
 
 
 
 
 
 
 
 
 
 
28cef2e
ccec2fc
16105d3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
import gradio as gr
import spaces
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel, pipeline
from transformers import logging as hflogging
import languagecodes
import httpx, os
import polars as pl 

hflogging.set_verbosity_error()
favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"}
df = pl.read_parquet("isolanguages.parquet")
non_empty_isos = df.slice(1).filter(pl.col("ISO639-1") != "").rows()
# all_langs = languagecodes.iso_languages_byname
all_langs = {iso[0]: (iso[1], iso[2], iso[3]) for iso in non_empty_isos} # {'Romanian': ('ro', 'rum', 'ron')}
iso1toall = {iso[1]: (iso[0], iso[2], iso[3]) for iso in non_empty_isos} # {'ro': ('Romanian', 'rum', 'ron')}
langs = list(favourite_langs.keys())
langs.extend(list(all_langs.keys())) # Language options as list, add favourite languages first

models = ["Helsinki-NLP", "QUICKMT", "Argos", "HPLT", "HPLT-OPUS", "Google",
          "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul", "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld",
          "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul",
          "Helsinki-NLP/opus-mt-tc-bible-big-roa-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-roa", "Helsinki-NLP/opus-mt-tc-bible-big-roa-en",
          "facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
          "facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
          "facebook/hf-seamless-m4t-medium", "facebook/seamless-m4t-large", "facebook/seamless-m4t-v2-large",
          "facebook/m2m100_418M", "facebook/m2m100_1.2B",
          "alirezamsh/small100", "naist-nlp/mitre_466m", "naist-nlp/mitre_913m",
          "bigscience/mt0-small", "bigscience/mt0-base", "bigscience/mt0-large", "bigscience/mt0-xl",
          "bigscience/bloomz-560m", "bigscience/bloomz-1b1", "bigscience/bloomz-1b7", "bigscience/bloomz-3b",
          "google/madlad400-3b-mt", "jbochi/madlad400-3b-mt",
          "NiuTrans/LMT-60-0.6B", "NiuTrans/LMT-60-1.7B", "NiuTrans/LMT-60-4B",
          "Lego-MT/Lego-MT", "BSC-LT/salamandraTA-2b-instruct",
          "winninghealth/WiNGPT-Babel", "winninghealth/WiNGPT-Babel-2", "winninghealth/WiNGPT-Babel-2.1",
          "Unbabel/Tower-Plus-2B", "utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
          "yanolja/YanoljaNEXT-Rosetta-4B-2511", "yanolja/YanoljaNEXT-Rosetta-4B",
          "google-t5/t5-small", "google-t5/t5-base", "google-t5/t5-large",
          "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl"]
DEFAULTS = [langs[0], langs[1], models[0]]

def timer(func):
    from time import time
    def translate(input_text, s_language, t_language, model_name) -> tuple[str, str]:
        start_time = time()
        translated_text, message_text = func(input_text, s_language, t_language, model_name)
        end_time = time()
        execution_time = end_time - start_time
        # print(f"Function {func.__name__!r} executed in {execution_time:.2f} seconds.")
        message_text = f'Executed in {execution_time:.2f} seconds! {message_text}' 
        return translated_text, message_text
    return translate

def model_to_cuda(model):
    # Move the model to GPU if available
    if torch.cuda.is_available():
        model = model.to('cuda')
        print("CUDA is available! Using GPU.")
    else:
        print("CUDA not available! Using CPU.")
    return model

def HelsinkiNLPAutoTokenizer(sl, tl, input_text): # deprecated
    if model_name == "Helsinki-NLP":
        message_text = f'Translated from {sl} to {tl} with {model_name}.'
        try:
            model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
        except EnvironmentError:
            try:   
                model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
                tokenizer = AutoTokenizer.from_pretrained(model_name)
                model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
                input_ids = tokenizer.encode(prompt, return_tensors="pt")
                output_ids = model.generate(input_ids, max_length=512)
                translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
                return translated_text, message_text
            except EnvironmentError as error:
                return f"Error finding model: {model_name}! Try other available language combination.", error
                      
class Translators:
    def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
        self.model_name = model_name
        self.sl, self.tl = sl, tl
        self.input_text = input_text
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.max_new_tokens = 512
        
    def google(self):  
        self.input_text = " ".join(self.input_text.split())
        url = os.environ['GCLIENT'] + f'sl={self.sl}&tl={self.tl}&q={self.input_text}'
        response = httpx.get(url)
        return response.json()[0][0][0]
    
    def simplepipe(self):
        try:
            pipe = pipeline("translation", model=self.model_name, device=self.device)                
            translation = pipe(self.input_text)
            message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {self.model_name}.'
            return translation[0]['translation_text'], message
        except Exception as error:
            return f"Error translating with model: {self.model_name}! Try other available language combination or model.", error

    def mitre(self):
        from transformers import AutoModel, AutoTokenizer
        tokenizer = AutoTokenizer.from_pretrained(self.model_name, trust_remote_code=True, use_fast=False)
        model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True).to(self.device)
        model.eval()
        # Translating from one or several sentences to a sole language
        src_tokens = tokenizer.encode_source_tokens_to_input_ids(self.input_text, target_language=self.tl)
        with torch.inference_mode(): # no_grad inference_mode
            generated_tokens = model.generate(src_tokens)
        result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        return result
    
    def rosetta(self):
        model = AutoModelForCausalLM.from_pretrained(
            self.model_name,
            dtype=torch.bfloat16, # float32 slow
            low_cpu_mem_usage=False, # True
            device_map="auto")
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        system = f"Translate the user's text to {self.tl}. Provide the final translation in a formal tone immediately immediately without any other text."
        messages = [
            {"role": "system", "content": system},
            {"role": "user", "content": self.input_text},
        ]     
        prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = tokenizer(prompt, return_tensors="pt").to(self.device)
        input_length = inputs["input_ids"].shape[1]       
        model.eval()
        with torch.inference_mode():
            outputs = model.generate(
                **inputs,
                max_new_tokens=self.max_new_tokens,
            )   
        generated_tokens = outputs[0][input_length:]
        translation = tokenizer.decode(generated_tokens, skip_special_tokens=True)
        return translation    
    
    def niutrans(self):
        tokenizer = AutoTokenizer.from_pretrained(self.model_name, padding_side='left')
        model = AutoModelForCausalLM.from_pretrained(self.model_name)
        prompt = f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text}.\n{self.tl}: "
        messages = [{"role": "user", "content": prompt}]
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True,
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
        generated_ids = model.generate(**model_inputs, max_new_tokens=512, num_beams=5, do_sample=False)
        output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 
        outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        outputs = ''.join(outputs) if isinstance(outputs, list) else outputs
        return outputs

    def salamandratapipe(self):
        pipe = pipeline("text-generation", model=self.model_name)
        messages = [{"role": "user", "content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text} \n{self.tl}:"}]
        return pipe(messages, max_new_tokens=self.max_new_tokens, early_stopping=True, num_beams=5)[0]["generated_text"][1]["content"]
     
    def hplt(self, opus = False):
        # langs = ['ar', 'bs', 'ca', 'en', 'et', 'eu', 'fi', 'ga', 'gl', 'hi', 'hr', 'is', 'mt', 'nn', 'sq', 'sw', 'zh_hant']
        hplt_models = ['ar-en', 'bs-en', 'ca-en', 'en-ar', 'en-bs', 'en-ca', 'en-et', 'en-eu', 'en-fi',
                  'en-ga', 'en-gl', 'en-hi', 'en-hr', 'en-is', 'en-mt', 'en-nn', 'en-sq', 'en-sw',
                  'en-zh_hant', 'et-en', 'eu-en', 'fi-en', 'ga-en', 'gl-en', 'hi-en', 'hr-en',
                  'is-en', 'mt-en', 'nn-en', 'sq-en', 'sw-en', 'zh_hant-en']
        lang_map = {"zh": "zh_hant"}
        self.sl = lang_map.get(self.sl, self.sl)
        self.tl = lang_map.get(self.tl, self.tl)
        if opus:
            hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt_opus' # HPLT/translate-en-hr-v1.0-hplt_opus
        else:
            hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt' # HPLT/translate-en-hr-v1.0-hplt
        if f'{self.sl}-{self.tl}' in hplt_models:
            pipe = pipeline("translation", model=hplt_model, device=self.device)
            translation = pipe(self.input_text)
            translated_text = translation[0]['translation_text']
            message_text = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {hplt_model}.'
        else:
            translated_text = f'HPLT model from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} not available!'
            message_text = f"Available models: {', '.join(hplt_models)}"
        return translated_text, message_text

    @staticmethod
    def download_argos_model(available_packages, from_code, to_code):
        import argostranslate.package
        print('Downloading model for', from_code, to_code) 
        # Download and install Argos Translate package from path
        package_to_install = next(
            filter(lambda x: x.from_code == from_code and x.to_code == to_code, available_packages)
        )
        argostranslate.package.install_from_path(package_to_install.download())
    
    def argos(self):
        import argostranslate.translate, argostranslate.package
        argostranslate.package.update_package_index()
        available_packages = argostranslate.package.get_available_packages()
        available_slanguages = [lang.from_code for lang in available_packages]
        available_tlanguages = [lang.to_code for lang in available_packages]
        available_languages = sorted(list(set(available_slanguages + available_tlanguages)))
        combos: tuple[str|str] = sorted(list(zip(available_slanguages, available_tlanguages)))
        packages_info = ', '.join(f"{pkg.from_name} ({pkg.from_code}) -> {pkg.to_name} ({pkg.to_code})" for pkg in available_packages)
        # print(available_languages, combos, packages_info)
        if self.sl not in available_languages and self.tl not in available_languages:
            translated_text = f'''No supported Argos model available from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}!
            Try other model or languages combination from the available Argos models: {', '.join(available_languages)}.'''
        else:
            try:
                if (self.sl, self.tl) in combos:
                    self.__class__.download_argos_model(available_packages, self.sl, self.tl) # Download model
                    translated_text = argostranslate.translate.translate(self.input_text, self.sl, self.tl) # Direct translation
                elif (self.sl, 'en') in combos and ('en', self.tl) in combos:
                    self.__class__.download_argos_model(available_packages, self.sl, 'en') # Download model
                    translated_pivottext = argostranslate.translate.translate(self.input_text, self.sl, 'en') # Translate to pivot language English
                    self.__class__.download_argos_model(available_packages, 'en', self.tl) # Download model
                    translated_text = argostranslate.translate.translate(translated_pivottext, 'en', self.tl) # Translate from pivot language English
                    message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with Argos using pivot language English.'
                else:
                    translated_text = f"No Argos model for {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}. Try other model or languages combination from the available Argos models: {packages_info}."
            except StopIteration as IterationError:
                # packages_info = ', '.join(f"{pkg.get_description()}->{str(pkg.links)} {str(pkg.source_languages)}" for pkg in available_packages)
                translated_text = f"No Argos model for {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}. Error: {IterationError}. Try other model or languages combination from the available Argos models: {packages_info}."
            except Exception as generalerror:
                translated_text = f"General error: {generalerror}"
        return translated_text

    @staticmethod
    def quickmttranslate(model_path, input_text):
        from quickmt import Translator
        # 'auto' auto-detects GPU, set to "cpu" to force CPU inference
        # device = 'gpu' if torch.cuda.is_available() else 'cpu'
        translator = Translator(str(model_path), device="auto", compute_type="auto")       
        # translation = Translator(f"./quickmt-{self.sl}-{self.tl}/", device="auto/cpu", intra_threads=2, inter_threads=2, compute_type="int8")       
        # ctranslate2._ext.Translator(model_path: str, device: str = 'cpu', *, device_index: Union[int, List[int]] = 0, compute_type: Union[str, Dict[str, str]] = 'default',
        # inter_threads: int = 1, intra_threads: int = 0, max_queued_batches: int = 0, flash_attention: bool = False, tensor_parallel: bool = False, files: object = None)
        # Options for compute_type: default, auto, int8, int8_float32, int8_float16, int8_bfloat16, int16, float16, bfloat16, float32
        # "int8" will work well for inference on CPU and give "int8_float16" or "int8_bfloat16" a try for GPU inference.
        
        # (self: ctranslate2._ext.Translator, source: List[List[str]], target_prefix: Optional[List[Optional[List[str]]]] = None, *, max_batch_size: int = 0,
        # batch_type: str = 'examples', asynchronous: bool = False, beam_size: int = 2, patience: float = 1, num_hypotheses: int = 1, length_penalty: float = 1,
        # coverage_penalty: float = 0, repetition_penalty: float = 1, no_repeat_ngram_size: int = 0, disable_unk: bool = False,
        # suppress_sequences: Optional[List[List[str]]] = None, end_token: Optional[Union[str, List[str], List[int]]] = None, return_end_token: bool = False,
        # prefix_bias_beta: float = 0, max_input_length: int = 1024, max_decoding_length: int = 256, min_decoding_length: int = 1, use_vmap: bool = False,
        # return_scores: bool = False, return_logits_vocab: bool = False, return_attention: bool = False, return_alternatives: bool = False,
        # min_alternative_expansion_prob: float = 0, sampling_topk: int = 1, sampling_topp: float = 1, sampling_temperature: float = 1, replace_unknowns: bool = False,
        # callback: Callable[[ctranslate2._ext.GenerationStepResult], bool] = None) -> Union[List[ctranslate2._ext.TranslationResult], List[ctranslate2._ext.AsyncTranslationResult]]
        # set beam size to 1 for faster speed (but lower quality) device="auto/cpu/gpu"
        translation = translator(input_text, beam_size=5, max_input_length = 512, max_decoding_length = 512)
        # print(model_path, input_text, translation)
        return translation

    @staticmethod
    def quickmtdownload(model_name):
        from quickmt.hub import hf_download
        from pathlib import Path
        model_path = Path("/quickmt/models") / model_name
        if not model_path.exists():
            hf_download(
            model_name = f"quickmt/{model_name}",
            output_dir=Path("/quickmt/models") / model_name,
        )
        return model_path
            
    def quickmt(self):
        model_name = f"quickmt-{self.sl}-{self.tl}"
        # from quickmt.hub import hf_list
        # quickmt_models = [i.split("/quickmt-")[1] for i in hf_list()]
        # quickmt_models.sort()
        quickmt_models = ['ar-en', 'bn-en', 'cs-en', 'da-en', 'de-en', 'el-en', 'en-ar', 'en-bn',
                          'en-cs', 'en-da', 'en-de', 'en-el', 'en-es', 'en-fa', 'en-fr', 'en-he',
                          'en-hi', 'en-hu', 'en-id', 'en-is', 'en-it', 'en-ja', 'en-ko', 'en-lv', 'en-pl',
                          'en-pt', 'en-ro', 'en-ru', 'en-sv', 'en-th', 'en-tr', 'en-ur', 'en-vi',
                          'en-zh', 'es-en', 'fa-en', 'fr-en', 'he-en', 'hi-en', 'hu-en', 'id-en',
                          'is-en', 'it-en', 'ja-en', 'ko-en', 'lv-en', 'pl-en', 'pt-en', 'ro-en', 'ru-en',
                          'th-en', 'tr-en', 'ur-en', 'vi-en', 'zh-en']
        # available_languages = list(set([lang for model in quickmt_models for lang in model.split('-')]))
        # available_languages.sort()
        available_languages = ['ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fr', 'he',
                               'hi', 'hu', 'id', 'it', 'is', 'ja', 'ko', 'lv', 'pl', 'pt', 'ro', 'ru',
                               'sv', 'th', 'tr', 'ur', 'vi', 'zh']
        # print(quickmt_models, available_languages)       
        # Direct translation model
        if f"{self.sl}-{self.tl}" in quickmt_models:
            model_path = Translators.quickmtdownload(model_name)
            translated_text = Translators.quickmttranslate(model_path, self.input_text)
            message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {model_name}.'
        # Pivot language English
        elif self.sl in available_languages and self.tl in available_languages:
            model_name = f"quickmt-{self.sl}-en"
            model_path = Translators.quickmtdownload(model_name)
            entranslation = Translators.quickmttranslate(model_path, self.input_text)
            model_name = f"quickmt-en-{self.tl}"
            model_path = Translators.quickmtdownload(model_name)
            translated_text = Translators.quickmttranslate(model_path, entranslation)
            message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with Quickmt using pivot language English.'
        else:
            translated_text = f'No Quickmt model available for translation from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}!'
            message = f"Available models: {', '.join(quickmt_models)}"
        return translated_text, message
        
    def HelsinkiNLP_mulroa(self):
        try:
            pipe = pipeline("translation", model=self.model_name, device=self.device)                
            tgt_lang = iso1toall.get(self.tl)[2] # 'deu', 'ron', 'eng', 'fra'
            translation = pipe(f'>>{tgt_lang}<< {self.input_text}')
            return translation[0]['translation_text'], f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {self.model_name}.'
        except Exception as error:
            return f"Error translating with model: {self.model_name}! Try other available language combination.", error
    
    def HelsinkiNLP(self):
        try: # Standard bilingual model
            model_name = f"Helsinki-NLP/opus-mt-{self.sl}-{self.tl}"
            pipe = pipeline("translation", model=model_name, device=self.device)
            translation = pipe(self.input_text)
            return translation[0]['translation_text'], f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {model_name}.'
        except EnvironmentError:
            try: # Tatoeba models
                model_name = f"Helsinki-NLP/opus-tatoeba-{self.sl}-{self.tl}"
                pipe = pipeline("translation", model=model_name, device=self.device)
                translation = pipe(self.input_text)
                return translation[0]['translation_text'], f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {model_name}.'
            except EnvironmentError as error:
                self.model_name = "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul" # Last resort: try multi to multi
                return self.HelsinkiNLP_mulroa()
        except KeyError as error:
            return f"Error: Translation direction {self.sl} to {self.tl} is not supported by Helsinki Translation Models", error
     
    def madlad(self):
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, device_map="auto")
        tokenizer = T5Tokenizer.from_pretrained(self.model_name)
        text = f"<2{self.tl}> {self.input_text}"
        # input_ids = tokenizer(text, return_tensors="pt").input_ids.to(model.device)
        # outputs = model.generate(input_ids=input_ids, max_new_tokens=512)    
        # return tokenizer.decode(outputs[0], skip_special_tokens=True)
        # return tokenizer.batch_decode(outputs, skip_special_tokens=True)
        # Use a pipeline as a high-level helper
        translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
        translated_text = translator(text, max_length=512)
        return translated_text[0]['translation_text']
    
    def flan(self):
        tokenizer = T5Tokenizer.from_pretrained(self.model_name, legacy=False)
        model = T5ForConditionalGeneration.from_pretrained(self.model_name)
        prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
        input_ids = tokenizer(prompt, return_tensors="pt").input_ids
        outputs = model.generate(input_ids)
        return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()

    def tfive(self):
        tokenizer = T5Tokenizer.from_pretrained(self.model_name)
        model = T5ForConditionalGeneration.from_pretrained(self.model_name, device_map="auto")
        prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
        input_ids = tokenizer.encode(prompt, return_tensors="pt")
        output_ids = model.generate(input_ids, max_length=512)
        translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
        return translated_text
    
    def mbart_many_to_many(self):
        from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
        model = MBartForConditionalGeneration.from_pretrained(self.model_name)
        tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
        # translate source to target
        tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
        encoded = tokenizer(self.input_text, return_tensors="pt")
        generated_tokens = model.generate(
            **encoded,
            forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[self.tl]]
        )
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    
    def mbart_one_to_many(self):
        # translate from English
        from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
        model = MBartForConditionalGeneration.from_pretrained(self.model_name)
        tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name, src_lang="en_XX")
        model_inputs = tokenizer(self.input_text, return_tensors="pt")
        langid = languagecodes.mbart_large_languages[self.tl]
        generated_tokens = model.generate(
            **model_inputs,
            forced_bos_token_id=tokenizer.lang_code_to_id[langid]
        )
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    
    def mbart_many_to_one(self):
        # translate to English
        from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
        model = MBartForConditionalGeneration.from_pretrained(self.model_name)
        tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
        tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
        encoded = tokenizer(self.input_text, return_tensors="pt")
        generated_tokens = model.generate(**encoded)
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
        
    def mtom(self):
        from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
        model = M2M100ForConditionalGeneration.from_pretrained(self.model_name)
        tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
        tokenizer.src_lang = self.sl
        encoded = tokenizer(self.input_text, return_tensors="pt")
        generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

    def smallonehundred(self):
        from transformers import M2M100ForConditionalGeneration
        from tokenization_small100 import SMALL100Tokenizer
        model = M2M100ForConditionalGeneration.from_pretrained(self.model_name)
        tokenizer = SMALL100Tokenizer.from_pretrained(self.model_name)
        tokenizer.tgt_lang = self.tl
        encoded_sl = tokenizer(self.input_text, return_tensors="pt")
        generated_tokens = model.generate(**encoded_sl, max_length=256, num_beams=5)
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
    
    def LegoMT(self):
        from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
        model = M2M100ForConditionalGeneration.from_pretrained(self.model_name) # "Lego-MT/Lego-MT"
        tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
        tokenizer.src_lang = self.sl
        encoded = tokenizer(self.input_text, return_tensors="pt")
        generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
        return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]  
    
    def bigscience(self):  
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
        self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
        inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
        outputs = model.generate(inputs)
        translation = tokenizer.decode(outputs[0])
        translation = translation.replace('<pad> ', '').replace('</s>', '')
        return translation
    
    def bloomz(self):  
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForCausalLM.from_pretrained(self.model_name)
        self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
        # inputs = tokenizer.encode(f"Translate from {self.sl} to {self.tl}: {self.input_text} Translation:", return_tensors="pt")
        inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
        outputs = model.generate(inputs)
        translation = tokenizer.decode(outputs[0])
        translation = translation.replace('<pad> ', '').replace('</s>', '')
        translation = translation.split('Translation:')[-1].strip() if 'Translation:' in translation else translation.strip()
        return translation
    
    def nllb(self):
        tokenizer = AutoTokenizer.from_pretrained(self.model_name, src_lang=self.sl)
        # model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name, device_map="auto", torch_dtype=torch.bfloat16)
        model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
        translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
        translated_text = translator(self.input_text, max_length=512)
        return translated_text[0]['translation_text']

    def seamlessm4t1(self):
        from transformers import AutoProcessor, SeamlessM4TModel
        processor = AutoProcessor.from_pretrained(self.model_name)
        model = SeamlessM4TModel.from_pretrained(self.model_name)
        src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'        
        tgt_lang = iso1toall.get(self.tl)[2]
        text_inputs = processor(text = self.input_text, src_lang=src_lang, return_tensors="pt")
        output_tokens = model.generate(**text_inputs, tgt_lang=tgt_lang, generate_speech=False) 
        return processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
        
    def seamlessm4t2(self):
        from transformers import AutoProcessor, SeamlessM4Tv2ForTextToText
        processor = AutoProcessor.from_pretrained(self.model_name)
        model = SeamlessM4Tv2ForTextToText.from_pretrained(self.model_name)
        src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'        
        tgt_lang = iso1toall.get(self.tl)[2]
        text_inputs = processor(text=self.input_text, src_lang=src_lang, return_tensors="pt")
        decoder_input_ids = model.generate(**text_inputs, tgt_lang=tgt_lang)[0].tolist()
        return processor.decode(decoder_input_ids, skip_special_tokens=True)
    
    def wingpt(self):
        model = AutoModelForCausalLM.from_pretrained(
           self.model_name,
           torch_dtype="auto",
           device_map="auto"
        )
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        # input_json = '{"input_text": self.input_text}'
        messages = [
           {"role": "system", "content": f"Translate this to {self.tl} language"}, 
           {"role": "user", "content": self.input_text}
        ]
        
        text = tokenizer.apply_chat_template(
           messages,
           tokenize=False,
           add_generation_prompt=True
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
        
        generated_ids = model.generate(
           **model_inputs,
           max_new_tokens=512,
           temperature=0.1
        )
        
        generated_ids = [
           output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]
        output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
        result = output.split('\n')[-1].strip() if '\n' in output else output.strip()
        return result
    
    def eurollm(self):
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForCausalLM.from_pretrained(self.model_name)  
        prompt = f"{self.sl}: {self.input_text} {self.tl}:"
        inputs = tokenizer(prompt, return_tensors="pt")
        outputs = model.generate(**inputs, max_new_tokens=512)
        output = tokenizer.decode(outputs[0], skip_special_tokens=True)
        print(output)
        # result = output.rsplit(f'{self.tl}:')[-1].strip() if f'{self.tl}:' in output else output.strip()
        result = output.rsplit(f'{self.tl}:')[-1].strip() if '\n' in output or f'{self.tl}:' in output else output.strip()
        return result
    
    def eurollm_instruct(self):
        tokenizer = AutoTokenizer.from_pretrained(self.model_name)
        model = AutoModelForCausalLM.from_pretrained(self.model_name)
        text = f'<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following {self.sl} source text to {self.tl}:\n{self.sl}: {self.input_text} \n{self.tl}: <|im_end|>\n<|im_start|>assistant\n'
        inputs = tokenizer(text, return_tensors="pt")
        outputs = model.generate(**inputs, max_new_tokens=512)
        output = tokenizer.decode(outputs[0], skip_special_tokens=True)
        if f'{self.tl}:' in output:
            output = output.rsplit(f'{self.tl}:')[-1].strip().replace('assistant\n', '').strip()
        return output

    def unbabel(self):
        pipe = pipeline("text-generation", model=self.model_name, torch_dtype=torch.bfloat16, device_map="auto")
        messages = [{"role": "user",
                     "content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text}.\n{self.tl}:"}]
        prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
        tokenized_input = pipe.tokenizer(self.input_text, return_tensors="pt")
        num_input_tokens = len(tokenized_input["input_ids"][0])
        max_new_tokens = round(num_input_tokens + 0.5 * num_input_tokens)
        outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=False)
        translated_text = outputs[0]["generated_text"]
        print(f"Input chars: {len(self.input_text)}", f"Input tokens: {num_input_tokens}", f"max_new_tokens: {max_new_tokens}",
              "Chars to tokens ratio:", round(len(self.input_text) / num_input_tokens, 2), f"Raw translation: {translated_text}")
        markers = ["<end_of_turn>", "<|im_end|>", "<|im_start|>assistant"] # , "\n" 
        for marker in markers:
            if marker in translated_text:
                translated_text = translated_text.split(marker)[1].strip()
        translated_text = translated_text.replace('Answer:', '', 1).strip() if translated_text.startswith('Answer:') else translated_text
        translated_text = translated_text.split("Translated text:")[0].strip() if "Translated text:" in translated_text else translated_text
        split_translated_text = translated_text.split('\n', translated_text.count('\n'))
        translated_text = '\n'.join(split_translated_text[:self.input_text.count('\n')+1])
        return translated_text

    def bergamot(model_name: str = 'deen', sl: str = 'de', tl: str = 'en', input_text: str = 'Hallo, mein Freund'):
        try:
            import bergamot
            # input_text = [input_text] if isinstance(input_text, str) else input_text           
            config = bergamot.ServiceConfig(numWorkers=4)
            service = bergamot.Service(config)
            model = service.modelFromConfigPath(f"./{model_name}/bergamot.config.yml")
            options = bergamot.ResponseOptions(alignment=False, qualityScores=False, HTML=False)
            rawresponse = service.translate(model, bergamot.VectorString(input_text), options)
            translated_text: str = next(iter(rawresponse)).target.text
            message_text = f"Translated from {sl} to {tl} with Bergamot {model_name}."
        except Exception as error:
            response = error
        return translated_text, message_text

@timer
@spaces.GPU
def translate_text(input_text: str, s_language: str, t_language: str, model_name: str) -> tuple[str, str]:
    """
    Translates the input text from the source language to the target language  using a specified model.

    Parameters:
        input_text (str): The source text to be translated
        s_language (str): The source language of the input text
        t_language (str): The target language in which the input text is translated
        model_name (str): The selected translation model name

    Returns:
        tuple: 
            translated_text(str): The input text translated to the selected target language
            message_text(str):  A descriptive message summarizing the translation process. Example: "Translated from English to German with Helsinki-NLP."
    
    Example:
        >>> translate_text("Hello world", "English", "German", "Helsinki-NLP")
        ("Hallo Welt", "Translated from English to German with Helsinki-NLP.")
    """
    
    sl = all_langs[s_language][0]
    tl = all_langs[t_language][0]
    message_text = f'Translated from {s_language} to {t_language} with {model_name}'
    if not input_text or input_text.strip() == '':
        translated_text = f'No input text entered!'
        message_text = 'Please enter a text to translate!'
        return translated_text, message_text
    if sl == tl:
        translated_text = f'Source language {s_language} identical to target language {t_language}!'
        message_text = 'Please choose different target and source language!'
        return translated_text, message_text 
    try:    
        if "-mul" in model_name.lower() or "mul-" in model_name.lower() or "-roa" in model_name.lower():
            translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP_mulroa()
        
        elif model_name == "Helsinki-NLP":
            translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP()
        
        elif model_name == 'Argos':
            translated_text = Translators(model_name, sl, tl, input_text).argos()

        elif model_name == "QUICKMT":
            translated_text, message_text = Translators(model_name, sl, tl, input_text).quickmt()
    
        elif model_name == 'Google':
            translated_text = Translators(model_name, sl, tl, input_text).google()
    
        elif model_name == "Helsinki-NLP/opus-mt-tc-bible-big-roa-en":
            translated_text, message_text = Translators(model_name, sl, tl, input_text).simplepipe()
        
        elif 'mitre' in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).mitre()
        
        elif "m2m" in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).mtom()
        
        elif "small100" in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).smallonehundred()

        elif "rosetta" in model_name.lower():
            translated_text = Translators(model_name, s_language, t_language, input_text).rosetta()
        
        elif "lego" in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).LegoMT()

        elif "niutrans" in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).niutrans()

        elif "salamandra" in model_name.lower():
            translated_text = Translators(model_name, s_language, t_language, input_text).salamandratapipe()
        
        elif model_name.startswith('google-t5'):
            translated_text = Translators(model_name, s_language, t_language, input_text).tfive()
            
        elif 'flan' in model_name.lower():
            translated_text = Translators(model_name, s_language, t_language, input_text).flan()

        elif 'madlad' in model_name.lower():
            translated_text = Translators(model_name, sl, tl, input_text).madlad()
            
        elif 'mt0' in model_name.lower():
            translated_text = Translators(model_name, s_language, t_language, input_text).bigscience()
    
        elif 'bloomz' in model_name.lower():
            translated_text = Translators(model_name, s_language, t_language, input_text).bloomz()
            
        elif 'nllb' in model_name.lower():
            nnlbsl, nnlbtl = languagecodes.nllb_language_codes[s_language], languagecodes.nllb_language_codes[t_language]
            translated_text = Translators(model_name, nnlbsl, nnlbtl, input_text).nllb()
        
        elif model_name == "facebook/mbart-large-50-many-to-many-mmt":
            translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_many()
    
        elif model_name == "facebook/mbart-large-50-one-to-many-mmt":
            translated_text = Translators(model_name, s_language, t_language, input_text).mbart_one_to_many()
    
        elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
            translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_one()
          
        elif model_name ==  "facebook/seamless-m4t-v2-large":
            translated_text = Translators(model_name, sl, tl, input_text).seamlessm4t2()
          
        elif "m4t-medium" in model_name or "m4t-large" in model_name:
            translated_text = Translators(model_name, sl, tl, input_text).seamlessm4t1()
        
        elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
            translated_text = Translators(model_name, s_language, t_language, input_text).eurollm_instruct()
        
        elif model_name == "utter-project/EuroLLM-1.7B":
            translated_text = Translators(model_name, s_language, t_language, input_text).eurollm()
                
        elif 'Unbabel' in model_name:   
            translated_text = Translators(model_name, s_language, t_language, input_text).unbabel()
            
        elif "winninghealth/WiNGPT" in model_name:      
            translated_text = Translators(model_name, s_language, t_language, input_text).wingpt()

        elif "HPLT" in model_name:
            if model_name == "HPLT-OPUS":
                translated_text, message_text = Translators(model_name, sl, tl, input_text).hplt(opus = True)
            else:
                translated_text, message_text = Translators(model_name, sl, tl, input_text).hplt()
        
        elif model_name == "Bergamot":
            translated_text, message_text = Translators(model_name, s_language, t_language, input_text).bergamot()
            
    except Exception as trerror:
        translated_text = f'Error in main function "translate_text": {trerror}'
    finally:
        print(input_text, translated_text, message_text)
        return translated_text, message_text

def swap_languages(src_lang, tgt_lang):
    '''Swap dropdown values for source and target language'''
    return tgt_lang, src_lang 

def get_info(model_name: str, sl: str = None, tl: str = None):
    helsinki = '### [Helsinki-NLP](https://huggingface.co/Helsinki-NLP "Helsinki-NLP")'
    if model_name == "Helsinki-NLP" and sl and tl:
        url = f'https://huggingface.co/{model_name}/opus-mt-{sl}-{tl}/raw/main/README.md'
        response = httpx.get(url).text
        if 'Repository not found' in response or 'Invalid username or password' in response:
            return helsinki
        return response
    elif model_name == "Argos":
        return httpx.get(f'https://huggingface.co/TiberiuCristianLeon/Argostranslate/raw/main/README.md').text
    elif "HPLT" in model_name:
        return """[HPLT Uni direction translation models](https://huggingface.co/collections/HPLT/hplt-12-uni-direction-translation-models)
            ['ar-en', 'bs-en', 'ca-en', 'en-ar', 'en-bs', 'en-ca', 'en-et', 'en-eu', 'en-fi',
            'en-ga', 'en-gl', 'en-hi', 'en-hr', 'en-is', 'en-mt', 'en-nn', 'en-sq', 'en-sw',
            'en-zh_hant', 'et-en', 'eu-en', 'fi-en', 'ga-en', 'gl-en', 'hi-en', 'hr-en',
            'is-en', 'mt-en', 'nn-en', 'sq-en', 'sw-en', 'zh_hant-en']"""
    elif "QUICKMT" in model_name:
        return """[QUICKMT](https://huggingface.co/quickmt)  
            ['ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fr', 'he',
           'hi', 'hu', 'id', 'it', 'is', 'ja', 'ko', 'lv', 'pl', 'pt', 'ro', 'ru',
           'sv', 'th', 'tr', 'ur', 'vi', 'zh']"""
    elif model_name == "Google":
        return "Google Translate Online"
    else:
        return httpx.get(f'https://huggingface.co/{model_name}/raw/main/README.md').text

with gr.Blocks() as interface:
    gr.Markdown("### Machine Text Translation with Gradio API and MCP Server")
    input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens",
                            autofocus=True, submit_btn='Translate', max_length=512) 
    with gr.Row(variant="compact"):
        s_language = gr.Dropdown(choices=langs, value = DEFAULTS[0], label="Source language", interactive=True, scale=2)
        t_language = gr.Dropdown(choices=langs, value = DEFAULTS[1], label="Target language", interactive=True, scale=2)
        swap_btn = gr.Button("Swap Languages", size="md", scale=1)
        swap_btn.click(fn=swap_languages, inputs=[s_language, t_language], outputs=[s_language, t_language], api_visibility="private")
    # with gr.Row(equal_height=True):
        model_name = gr.Dropdown(choices=models, label=f"Select a model. Default is {DEFAULTS[2]}.", value=DEFAULTS[2], interactive=True, scale=2)
        # translate_btn = gr.Button(value="Translate", scale=1)

    translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, buttons=["copy"], lines=2)
    message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False,
                          value=f'Default translation settings: from {s_language.value} to {t_language.value} with {model_name.value}.', lines=2)
    allmodels = gr.HTML(label="Models with links:", value=', '.join([f'<a href="https://huggingface.co/{model}">{model}</a>' for model in models]),
                        show_label=False, container=True, css_template="""a {padding: 0px;}""")
    model_info = gr.Markdown(label="Model info:", value=get_info(DEFAULTS[2], DEFAULTS[0], DEFAULTS[1]), buttons=["copy"])

    model_name.change(fn=get_info, inputs=[model_name, s_language, t_language], outputs=model_info, api_visibility="private")
    # translate_btn.click(
    #     fn=translate_text, 
    #     inputs=[input_text, s_language, t_language, model_name], 
    #     outputs=[translated_text, message_text]
    # )
    input_text.submit(
    fn=translate_text,
    inputs=[input_text, s_language, t_language, model_name],
    outputs=[translated_text, message_text]
    )
if __name__ == "__main__":
    interface.launch(mcp_server=True, footer_links=["api", "settings"])
    # interface.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860, mcp_server=True)