Spaces:
Running
Running
File size: 46,690 Bytes
56f497c 70ebea3 a103fac 2bbff53 cae0132 4b799e0 7748528 56f497c 2bbff53 cae0132 7748528 4045d37 d99f102 b4c4fbe 86562c6 37ea4b9 f4d39b3 4045d37 48ec1f2 83386a6 ed3f7df 53f9025 3e539e5 0e657e3 48ec1f2 a50fb3c ec15505 67ad314 2f20105 3799aae 48ec1f2 2f20105 48ec1f2 37ea4b9 e13fba3 2cc0ddd ecf7a0d 2cc0ddd fe83f98 2cc0ddd ecf7a0d 2cc0ddd 310e819 0b61062 f434999 92c9491 f434999 e389a2d 87d4bd8 2f20105 e389a2d 2cc0ddd e389a2d 4b799e0 e389a2d fe11d17 bd9f56c 545a45a bd9f56c 67ad314 ecf7a0d 48ec1f2 67ad314 631e80d 2f20105 bd9f56c 631e80d bd9f56c 545a45a bd9f56c 545a45a 145a71f bd9f56c 67ad314 f434999 09be962 f434999 fe11d17 f434999 fe11d17 67ad314 09be962 67ad314 09be962 bd5351d 545a45a bd5351d 5b81536 bd5351d 5b81536 bd5351d b7bb052 545a45a bd5351d 545a45a bd5351d 545a45a 5b81536 ad27d14 f434999 d99f102 bd9f56c 37d32ba ee8f0d6 37d32ba ee8f0d6 37d32ba ee8f0d6 bd9f56c 67ad314 37d32ba 67ad314 37d32ba 67ad314 bd9f56c 67ad314 37d32ba 67ad314 bd9f56c 545a45a bd9f56c 545a45a bd9f56c 545a45a bd9f56c 2040a36 d99f102 87d4bd8 0e657e3 d99f102 0448b0f f434999 87d4bd8 f434999 545a45a f434999 87d4bd8 f434999 545a45a f434999 87d4bd8 f4d39b3 f434999 2f20105 ed9f776 95ed8e4 ed9f776 95ed8e4 ed9f776 21077c7 92c9491 ec5a10c 2f20105 92c9491 03dd083 1f3055b 92c9491 03dd083 1f3055b 92c9491 7d0b5b1 92c9491 f15fe8d 92c9491 0e657e3 545a45a 0e657e3 31f90eb 545a45a 0e657e3 545a45a 0e657e3 31f90eb f434999 a64284b e5ffc74 f434999 3b73549 f434999 c067a87 f434999 252c640 f434999 08b54a5 f434999 a50fb3c d63ee61 0d30e3d 2cc0ddd 70ebea3 f434999 135432f 481d87b 135432f 481d87b 135432f f434999 481d87b 135432f 481d87b 4dfd4b1 481d87b 135432f 481d87b 4045d37 f434999 8a76dba 722308d 6a1b421 a862461 95ed8e4 148dd30 2040a36 d99f102 87d4bd8 f434999 148dd30 f434999 bd9f56c 1810ebb bd9f56c 5fc3c5d 148dd30 52193d6 309f943 bd9f56c ecf7a0d 8be3c99 92c9491 631e80d ec15505 48ec1f2 ec15505 67ad314 2f20105 d836ba8 f434999 21077c7 148dd30 f434999 ed9f776 e0efacd 148dd30 f434999 148dd30 f434999 148dd30 f434999 92c9491 9b5378d 148dd30 f434999 310e819 148dd30 f434999 3e539e5 148dd30 f434999 bd9f56c 0e657e3 31f90eb 0e657e3 31f90eb 0e657e3 92c9491 f434999 92c9491 f434999 92c9491 148dd30 f434999 e389a2d 306697e f434999 0d30e3d bd9f56c 145a71f bd9f56c 145a71f bd9f56c 0d30e3d d63ee61 e389a2d 4e0ca09 53f9025 e389a2d 53f9025 56f497c 2169b22 4e0ca09 2169b22 0b2c6b5 9b5a331 edf0a26 4b799e0 edf0a26 5b50e0a edf0a26 4b799e0 1810ebb ed3f7df 145a71f 09be962 37d32ba edf0a26 08b54a5 edf0a26 4b799e0 bc01b39 1ac6eb0 37d32ba 1ac6eb0 56f497c 1ac6eb0 7c6021f 1ac6eb0 56f497c 1ac6eb0 28cef2e ccec2fc 16105d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
import gradio as gr
import spaces
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel, pipeline
from transformers import logging as hflogging
import languagecodes
import httpx, os
import polars as pl
hflogging.set_verbosity_error()
favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"}
df = pl.read_parquet("isolanguages.parquet")
non_empty_isos = df.slice(1).filter(pl.col("ISO639-1") != "").rows()
# all_langs = languagecodes.iso_languages_byname
all_langs = {iso[0]: (iso[1], iso[2], iso[3]) for iso in non_empty_isos} # {'Romanian': ('ro', 'rum', 'ron')}
iso1toall = {iso[1]: (iso[0], iso[2], iso[3]) for iso in non_empty_isos} # {'ro': ('Romanian', 'rum', 'ron')}
langs = list(favourite_langs.keys())
langs.extend(list(all_langs.keys())) # Language options as list, add favourite languages first
models = ["Helsinki-NLP", "QUICKMT", "Argos", "HPLT", "HPLT-OPUS", "Google",
"Helsinki-NLP/opus-mt-tc-bible-big-mul-mul", "Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_nld",
"Helsinki-NLP/opus-mt-tc-bible-big-mul-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-mul",
"Helsinki-NLP/opus-mt-tc-bible-big-roa-deu_eng_fra_por_spa", "Helsinki-NLP/opus-mt-tc-bible-big-deu_eng_fra_por_spa-roa", "Helsinki-NLP/opus-mt-tc-bible-big-roa-en",
"facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
"facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
"facebook/hf-seamless-m4t-medium", "facebook/seamless-m4t-large", "facebook/seamless-m4t-v2-large",
"facebook/m2m100_418M", "facebook/m2m100_1.2B",
"alirezamsh/small100", "naist-nlp/mitre_466m", "naist-nlp/mitre_913m",
"bigscience/mt0-small", "bigscience/mt0-base", "bigscience/mt0-large", "bigscience/mt0-xl",
"bigscience/bloomz-560m", "bigscience/bloomz-1b1", "bigscience/bloomz-1b7", "bigscience/bloomz-3b",
"google/madlad400-3b-mt", "jbochi/madlad400-3b-mt",
"NiuTrans/LMT-60-0.6B", "NiuTrans/LMT-60-1.7B", "NiuTrans/LMT-60-4B",
"Lego-MT/Lego-MT", "BSC-LT/salamandraTA-2b-instruct",
"winninghealth/WiNGPT-Babel", "winninghealth/WiNGPT-Babel-2", "winninghealth/WiNGPT-Babel-2.1",
"Unbabel/Tower-Plus-2B", "utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
"yanolja/YanoljaNEXT-Rosetta-4B-2511", "yanolja/YanoljaNEXT-Rosetta-4B",
"google-t5/t5-small", "google-t5/t5-base", "google-t5/t5-large",
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl"]
DEFAULTS = [langs[0], langs[1], models[0]]
def timer(func):
from time import time
def translate(input_text, s_language, t_language, model_name) -> tuple[str, str]:
start_time = time()
translated_text, message_text = func(input_text, s_language, t_language, model_name)
end_time = time()
execution_time = end_time - start_time
# print(f"Function {func.__name__!r} executed in {execution_time:.2f} seconds.")
message_text = f'Executed in {execution_time:.2f} seconds! {message_text}'
return translated_text, message_text
return translate
def model_to_cuda(model):
# Move the model to GPU if available
if torch.cuda.is_available():
model = model.to('cuda')
print("CUDA is available! Using GPU.")
else:
print("CUDA not available! Using CPU.")
return model
def HelsinkiNLPAutoTokenizer(sl, tl, input_text): # deprecated
if model_name == "Helsinki-NLP":
message_text = f'Translated from {sl} to {tl} with {model_name}.'
try:
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
except EnvironmentError:
try:
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=512)
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return translated_text, message_text
except EnvironmentError as error:
return f"Error finding model: {model_name}! Try other available language combination.", error
class Translators:
def __init__(self, model_name: str, sl: str, tl: str, input_text: str):
self.model_name = model_name
self.sl, self.tl = sl, tl
self.input_text = input_text
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.max_new_tokens = 512
def google(self):
self.input_text = " ".join(self.input_text.split())
url = os.environ['GCLIENT'] + f'sl={self.sl}&tl={self.tl}&q={self.input_text}'
response = httpx.get(url)
return response.json()[0][0][0]
def simplepipe(self):
try:
pipe = pipeline("translation", model=self.model_name, device=self.device)
translation = pipe(self.input_text)
message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {self.model_name}.'
return translation[0]['translation_text'], message
except Exception as error:
return f"Error translating with model: {self.model_name}! Try other available language combination or model.", error
def mitre(self):
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.model_name, trust_remote_code=True, use_fast=False)
model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True).to(self.device)
model.eval()
# Translating from one or several sentences to a sole language
src_tokens = tokenizer.encode_source_tokens_to_input_ids(self.input_text, target_language=self.tl)
with torch.inference_mode(): # no_grad inference_mode
generated_tokens = model.generate(src_tokens)
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return result
def rosetta(self):
model = AutoModelForCausalLM.from_pretrained(
self.model_name,
dtype=torch.bfloat16, # float32 slow
low_cpu_mem_usage=False, # True
device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
system = f"Translate the user's text to {self.tl}. Provide the final translation in a formal tone immediately immediately without any other text."
messages = [
{"role": "system", "content": system},
{"role": "user", "content": self.input_text},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to(self.device)
input_length = inputs["input_ids"].shape[1]
model.eval()
with torch.inference_mode():
outputs = model.generate(
**inputs,
max_new_tokens=self.max_new_tokens,
)
generated_tokens = outputs[0][input_length:]
translation = tokenizer.decode(generated_tokens, skip_special_tokens=True)
return translation
def niutrans(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name, padding_side='left')
model = AutoModelForCausalLM.from_pretrained(self.model_name)
prompt = f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text}.\n{self.tl}: "
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(**model_inputs, max_new_tokens=512, num_beams=5, do_sample=False)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
outputs = ''.join(outputs) if isinstance(outputs, list) else outputs
return outputs
def salamandratapipe(self):
pipe = pipeline("text-generation", model=self.model_name)
messages = [{"role": "user", "content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text} \n{self.tl}:"}]
return pipe(messages, max_new_tokens=self.max_new_tokens, early_stopping=True, num_beams=5)[0]["generated_text"][1]["content"]
def hplt(self, opus = False):
# langs = ['ar', 'bs', 'ca', 'en', 'et', 'eu', 'fi', 'ga', 'gl', 'hi', 'hr', 'is', 'mt', 'nn', 'sq', 'sw', 'zh_hant']
hplt_models = ['ar-en', 'bs-en', 'ca-en', 'en-ar', 'en-bs', 'en-ca', 'en-et', 'en-eu', 'en-fi',
'en-ga', 'en-gl', 'en-hi', 'en-hr', 'en-is', 'en-mt', 'en-nn', 'en-sq', 'en-sw',
'en-zh_hant', 'et-en', 'eu-en', 'fi-en', 'ga-en', 'gl-en', 'hi-en', 'hr-en',
'is-en', 'mt-en', 'nn-en', 'sq-en', 'sw-en', 'zh_hant-en']
lang_map = {"zh": "zh_hant"}
self.sl = lang_map.get(self.sl, self.sl)
self.tl = lang_map.get(self.tl, self.tl)
if opus:
hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt_opus' # HPLT/translate-en-hr-v1.0-hplt_opus
else:
hplt_model = f'HPLT/translate-{self.sl}-{self.tl}-v1.0-hplt' # HPLT/translate-en-hr-v1.0-hplt
if f'{self.sl}-{self.tl}' in hplt_models:
pipe = pipeline("translation", model=hplt_model, device=self.device)
translation = pipe(self.input_text)
translated_text = translation[0]['translation_text']
message_text = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {hplt_model}.'
else:
translated_text = f'HPLT model from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} not available!'
message_text = f"Available models: {', '.join(hplt_models)}"
return translated_text, message_text
@staticmethod
def download_argos_model(available_packages, from_code, to_code):
import argostranslate.package
print('Downloading model for', from_code, to_code)
# Download and install Argos Translate package from path
package_to_install = next(
filter(lambda x: x.from_code == from_code and x.to_code == to_code, available_packages)
)
argostranslate.package.install_from_path(package_to_install.download())
def argos(self):
import argostranslate.translate, argostranslate.package
argostranslate.package.update_package_index()
available_packages = argostranslate.package.get_available_packages()
available_slanguages = [lang.from_code for lang in available_packages]
available_tlanguages = [lang.to_code for lang in available_packages]
available_languages = sorted(list(set(available_slanguages + available_tlanguages)))
combos: tuple[str|str] = sorted(list(zip(available_slanguages, available_tlanguages)))
packages_info = ', '.join(f"{pkg.from_name} ({pkg.from_code}) -> {pkg.to_name} ({pkg.to_code})" for pkg in available_packages)
# print(available_languages, combos, packages_info)
if self.sl not in available_languages and self.tl not in available_languages:
translated_text = f'''No supported Argos model available from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}!
Try other model or languages combination from the available Argos models: {', '.join(available_languages)}.'''
else:
try:
if (self.sl, self.tl) in combos:
self.__class__.download_argos_model(available_packages, self.sl, self.tl) # Download model
translated_text = argostranslate.translate.translate(self.input_text, self.sl, self.tl) # Direct translation
elif (self.sl, 'en') in combos and ('en', self.tl) in combos:
self.__class__.download_argos_model(available_packages, self.sl, 'en') # Download model
translated_pivottext = argostranslate.translate.translate(self.input_text, self.sl, 'en') # Translate to pivot language English
self.__class__.download_argos_model(available_packages, 'en', self.tl) # Download model
translated_text = argostranslate.translate.translate(translated_pivottext, 'en', self.tl) # Translate from pivot language English
message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with Argos using pivot language English.'
else:
translated_text = f"No Argos model for {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}. Try other model or languages combination from the available Argos models: {packages_info}."
except StopIteration as IterationError:
# packages_info = ', '.join(f"{pkg.get_description()}->{str(pkg.links)} {str(pkg.source_languages)}" for pkg in available_packages)
translated_text = f"No Argos model for {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}. Error: {IterationError}. Try other model or languages combination from the available Argos models: {packages_info}."
except Exception as generalerror:
translated_text = f"General error: {generalerror}"
return translated_text
@staticmethod
def quickmttranslate(model_path, input_text):
from quickmt import Translator
# 'auto' auto-detects GPU, set to "cpu" to force CPU inference
# device = 'gpu' if torch.cuda.is_available() else 'cpu'
translator = Translator(str(model_path), device="auto", compute_type="auto")
# translation = Translator(f"./quickmt-{self.sl}-{self.tl}/", device="auto/cpu", intra_threads=2, inter_threads=2, compute_type="int8")
# ctranslate2._ext.Translator(model_path: str, device: str = 'cpu', *, device_index: Union[int, List[int]] = 0, compute_type: Union[str, Dict[str, str]] = 'default',
# inter_threads: int = 1, intra_threads: int = 0, max_queued_batches: int = 0, flash_attention: bool = False, tensor_parallel: bool = False, files: object = None)
# Options for compute_type: default, auto, int8, int8_float32, int8_float16, int8_bfloat16, int16, float16, bfloat16, float32
# "int8" will work well for inference on CPU and give "int8_float16" or "int8_bfloat16" a try for GPU inference.
# (self: ctranslate2._ext.Translator, source: List[List[str]], target_prefix: Optional[List[Optional[List[str]]]] = None, *, max_batch_size: int = 0,
# batch_type: str = 'examples', asynchronous: bool = False, beam_size: int = 2, patience: float = 1, num_hypotheses: int = 1, length_penalty: float = 1,
# coverage_penalty: float = 0, repetition_penalty: float = 1, no_repeat_ngram_size: int = 0, disable_unk: bool = False,
# suppress_sequences: Optional[List[List[str]]] = None, end_token: Optional[Union[str, List[str], List[int]]] = None, return_end_token: bool = False,
# prefix_bias_beta: float = 0, max_input_length: int = 1024, max_decoding_length: int = 256, min_decoding_length: int = 1, use_vmap: bool = False,
# return_scores: bool = False, return_logits_vocab: bool = False, return_attention: bool = False, return_alternatives: bool = False,
# min_alternative_expansion_prob: float = 0, sampling_topk: int = 1, sampling_topp: float = 1, sampling_temperature: float = 1, replace_unknowns: bool = False,
# callback: Callable[[ctranslate2._ext.GenerationStepResult], bool] = None) -> Union[List[ctranslate2._ext.TranslationResult], List[ctranslate2._ext.AsyncTranslationResult]]
# set beam size to 1 for faster speed (but lower quality) device="auto/cpu/gpu"
translation = translator(input_text, beam_size=5, max_input_length = 512, max_decoding_length = 512)
# print(model_path, input_text, translation)
return translation
@staticmethod
def quickmtdownload(model_name):
from quickmt.hub import hf_download
from pathlib import Path
model_path = Path("/quickmt/models") / model_name
if not model_path.exists():
hf_download(
model_name = f"quickmt/{model_name}",
output_dir=Path("/quickmt/models") / model_name,
)
return model_path
def quickmt(self):
model_name = f"quickmt-{self.sl}-{self.tl}"
# from quickmt.hub import hf_list
# quickmt_models = [i.split("/quickmt-")[1] for i in hf_list()]
# quickmt_models.sort()
quickmt_models = ['ar-en', 'bn-en', 'cs-en', 'da-en', 'de-en', 'el-en', 'en-ar', 'en-bn',
'en-cs', 'en-da', 'en-de', 'en-el', 'en-es', 'en-fa', 'en-fr', 'en-he',
'en-hi', 'en-hu', 'en-id', 'en-is', 'en-it', 'en-ja', 'en-ko', 'en-lv', 'en-pl',
'en-pt', 'en-ro', 'en-ru', 'en-sv', 'en-th', 'en-tr', 'en-ur', 'en-vi',
'en-zh', 'es-en', 'fa-en', 'fr-en', 'he-en', 'hi-en', 'hu-en', 'id-en',
'is-en', 'it-en', 'ja-en', 'ko-en', 'lv-en', 'pl-en', 'pt-en', 'ro-en', 'ru-en',
'th-en', 'tr-en', 'ur-en', 'vi-en', 'zh-en']
# available_languages = list(set([lang for model in quickmt_models for lang in model.split('-')]))
# available_languages.sort()
available_languages = ['ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fr', 'he',
'hi', 'hu', 'id', 'it', 'is', 'ja', 'ko', 'lv', 'pl', 'pt', 'ro', 'ru',
'sv', 'th', 'tr', 'ur', 'vi', 'zh']
# print(quickmt_models, available_languages)
# Direct translation model
if f"{self.sl}-{self.tl}" in quickmt_models:
model_path = Translators.quickmtdownload(model_name)
translated_text = Translators.quickmttranslate(model_path, self.input_text)
message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {model_name}.'
# Pivot language English
elif self.sl in available_languages and self.tl in available_languages:
model_name = f"quickmt-{self.sl}-en"
model_path = Translators.quickmtdownload(model_name)
entranslation = Translators.quickmttranslate(model_path, self.input_text)
model_name = f"quickmt-en-{self.tl}"
model_path = Translators.quickmtdownload(model_name)
translated_text = Translators.quickmttranslate(model_path, entranslation)
message = f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with Quickmt using pivot language English.'
else:
translated_text = f'No Quickmt model available for translation from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]}!'
message = f"Available models: {', '.join(quickmt_models)}"
return translated_text, message
def HelsinkiNLP_mulroa(self):
try:
pipe = pipeline("translation", model=self.model_name, device=self.device)
tgt_lang = iso1toall.get(self.tl)[2] # 'deu', 'ron', 'eng', 'fra'
translation = pipe(f'>>{tgt_lang}<< {self.input_text}')
return translation[0]['translation_text'], f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {self.model_name}.'
except Exception as error:
return f"Error translating with model: {self.model_name}! Try other available language combination.", error
def HelsinkiNLP(self):
try: # Standard bilingual model
model_name = f"Helsinki-NLP/opus-mt-{self.sl}-{self.tl}"
pipe = pipeline("translation", model=model_name, device=self.device)
translation = pipe(self.input_text)
return translation[0]['translation_text'], f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {model_name}.'
except EnvironmentError:
try: # Tatoeba models
model_name = f"Helsinki-NLP/opus-tatoeba-{self.sl}-{self.tl}"
pipe = pipeline("translation", model=model_name, device=self.device)
translation = pipe(self.input_text)
return translation[0]['translation_text'], f'Translated from {iso1toall[self.sl][0]} to {iso1toall[self.tl][0]} with {model_name}.'
except EnvironmentError as error:
self.model_name = "Helsinki-NLP/opus-mt-tc-bible-big-mul-mul" # Last resort: try multi to multi
return self.HelsinkiNLP_mulroa()
except KeyError as error:
return f"Error: Translation direction {self.sl} to {self.tl} is not supported by Helsinki Translation Models", error
def madlad(self):
model = T5ForConditionalGeneration.from_pretrained(self.model_name, device_map="auto")
tokenizer = T5Tokenizer.from_pretrained(self.model_name)
text = f"<2{self.tl}> {self.input_text}"
# input_ids = tokenizer(text, return_tensors="pt").input_ids.to(model.device)
# outputs = model.generate(input_ids=input_ids, max_new_tokens=512)
# return tokenizer.decode(outputs[0], skip_special_tokens=True)
# return tokenizer.batch_decode(outputs, skip_special_tokens=True)
# Use a pipeline as a high-level helper
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
translated_text = translator(text, max_length=512)
return translated_text[0]['translation_text']
def flan(self):
tokenizer = T5Tokenizer.from_pretrained(self.model_name, legacy=False)
model = T5ForConditionalGeneration.from_pretrained(self.model_name)
prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
def tfive(self):
tokenizer = T5Tokenizer.from_pretrained(self.model_name)
model = T5ForConditionalGeneration.from_pretrained(self.model_name, device_map="auto")
prompt = f"translate {self.sl} to {self.tl}: {self.input_text}"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=512)
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
return translated_text
def mbart_many_to_many(self):
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
# translate source to target
tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
encoded = tokenizer(self.input_text, return_tensors="pt")
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[self.tl]]
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def mbart_one_to_many(self):
# translate from English
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name, src_lang="en_XX")
model_inputs = tokenizer(self.input_text, return_tensors="pt")
langid = languagecodes.mbart_large_languages[self.tl]
generated_tokens = model.generate(
**model_inputs,
forced_bos_token_id=tokenizer.lang_code_to_id[langid]
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def mbart_many_to_one(self):
# translate to English
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained(self.model_name)
tokenizer = MBart50TokenizerFast.from_pretrained(self.model_name)
tokenizer.src_lang = languagecodes.mbart_large_languages[self.sl]
encoded = tokenizer(self.input_text, return_tensors="pt")
generated_tokens = model.generate(**encoded)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def mtom(self):
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
model = M2M100ForConditionalGeneration.from_pretrained(self.model_name)
tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
tokenizer.src_lang = self.sl
encoded = tokenizer(self.input_text, return_tensors="pt")
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def smallonehundred(self):
from transformers import M2M100ForConditionalGeneration
from tokenization_small100 import SMALL100Tokenizer
model = M2M100ForConditionalGeneration.from_pretrained(self.model_name)
tokenizer = SMALL100Tokenizer.from_pretrained(self.model_name)
tokenizer.tgt_lang = self.tl
encoded_sl = tokenizer(self.input_text, return_tensors="pt")
generated_tokens = model.generate(**encoded_sl, max_length=256, num_beams=5)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def LegoMT(self):
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
model = M2M100ForConditionalGeneration.from_pretrained(self.model_name) # "Lego-MT/Lego-MT"
tokenizer = M2M100Tokenizer.from_pretrained(self.model_name)
tokenizer.src_lang = self.sl
encoded = tokenizer(self.input_text, return_tensors="pt")
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(self.tl))
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def bigscience(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
outputs = model.generate(inputs)
translation = tokenizer.decode(outputs[0])
translation = translation.replace('<pad> ', '').replace('</s>', '')
return translation
def bloomz(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForCausalLM.from_pretrained(self.model_name)
self.input_text = self.input_text if self.input_text.endswith('.') else f'{self.input_text}.'
# inputs = tokenizer.encode(f"Translate from {self.sl} to {self.tl}: {self.input_text} Translation:", return_tensors="pt")
inputs = tokenizer.encode(f"Translate to {self.tl}: {self.input_text}", return_tensors="pt")
outputs = model.generate(inputs)
translation = tokenizer.decode(outputs[0])
translation = translation.replace('<pad> ', '').replace('</s>', '')
translation = translation.split('Translation:')[-1].strip() if 'Translation:' in translation else translation.strip()
return translation
def nllb(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name, src_lang=self.sl)
# model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name, device_map="auto", torch_dtype=torch.bfloat16)
model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=self.sl, tgt_lang=self.tl)
translated_text = translator(self.input_text, max_length=512)
return translated_text[0]['translation_text']
def seamlessm4t1(self):
from transformers import AutoProcessor, SeamlessM4TModel
processor = AutoProcessor.from_pretrained(self.model_name)
model = SeamlessM4TModel.from_pretrained(self.model_name)
src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'
tgt_lang = iso1toall.get(self.tl)[2]
text_inputs = processor(text = self.input_text, src_lang=src_lang, return_tensors="pt")
output_tokens = model.generate(**text_inputs, tgt_lang=tgt_lang, generate_speech=False)
return processor.decode(output_tokens[0].tolist()[0], skip_special_tokens=True)
def seamlessm4t2(self):
from transformers import AutoProcessor, SeamlessM4Tv2ForTextToText
processor = AutoProcessor.from_pretrained(self.model_name)
model = SeamlessM4Tv2ForTextToText.from_pretrained(self.model_name)
src_lang = iso1toall.get(self.sl)[2] # 'deu', 'ron', 'eng', 'fra'
tgt_lang = iso1toall.get(self.tl)[2]
text_inputs = processor(text=self.input_text, src_lang=src_lang, return_tensors="pt")
decoder_input_ids = model.generate(**text_inputs, tgt_lang=tgt_lang)[0].tolist()
return processor.decode(decoder_input_ids, skip_special_tokens=True)
def wingpt(self):
model = AutoModelForCausalLM.from_pretrained(
self.model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
# input_json = '{"input_text": self.input_text}'
messages = [
{"role": "system", "content": f"Translate this to {self.tl} language"},
{"role": "user", "content": self.input_text}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0.1
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
result = output.split('\n')[-1].strip() if '\n' in output else output.strip()
return result
def eurollm(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForCausalLM.from_pretrained(self.model_name)
prompt = f"{self.sl}: {self.input_text} {self.tl}:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(output)
# result = output.rsplit(f'{self.tl}:')[-1].strip() if f'{self.tl}:' in output else output.strip()
result = output.rsplit(f'{self.tl}:')[-1].strip() if '\n' in output or f'{self.tl}:' in output else output.strip()
return result
def eurollm_instruct(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
model = AutoModelForCausalLM.from_pretrained(self.model_name)
text = f'<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following {self.sl} source text to {self.tl}:\n{self.sl}: {self.input_text} \n{self.tl}: <|im_end|>\n<|im_start|>assistant\n'
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
if f'{self.tl}:' in output:
output = output.rsplit(f'{self.tl}:')[-1].strip().replace('assistant\n', '').strip()
return output
def unbabel(self):
pipe = pipeline("text-generation", model=self.model_name, torch_dtype=torch.bfloat16, device_map="auto")
messages = [{"role": "user",
"content": f"Translate the following text from {self.sl} into {self.tl}.\n{self.sl}: {self.input_text}.\n{self.tl}:"}]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
tokenized_input = pipe.tokenizer(self.input_text, return_tensors="pt")
num_input_tokens = len(tokenized_input["input_ids"][0])
max_new_tokens = round(num_input_tokens + 0.5 * num_input_tokens)
outputs = pipe(prompt, max_new_tokens=max_new_tokens, do_sample=False)
translated_text = outputs[0]["generated_text"]
print(f"Input chars: {len(self.input_text)}", f"Input tokens: {num_input_tokens}", f"max_new_tokens: {max_new_tokens}",
"Chars to tokens ratio:", round(len(self.input_text) / num_input_tokens, 2), f"Raw translation: {translated_text}")
markers = ["<end_of_turn>", "<|im_end|>", "<|im_start|>assistant"] # , "\n"
for marker in markers:
if marker in translated_text:
translated_text = translated_text.split(marker)[1].strip()
translated_text = translated_text.replace('Answer:', '', 1).strip() if translated_text.startswith('Answer:') else translated_text
translated_text = translated_text.split("Translated text:")[0].strip() if "Translated text:" in translated_text else translated_text
split_translated_text = translated_text.split('\n', translated_text.count('\n'))
translated_text = '\n'.join(split_translated_text[:self.input_text.count('\n')+1])
return translated_text
def bergamot(model_name: str = 'deen', sl: str = 'de', tl: str = 'en', input_text: str = 'Hallo, mein Freund'):
try:
import bergamot
# input_text = [input_text] if isinstance(input_text, str) else input_text
config = bergamot.ServiceConfig(numWorkers=4)
service = bergamot.Service(config)
model = service.modelFromConfigPath(f"./{model_name}/bergamot.config.yml")
options = bergamot.ResponseOptions(alignment=False, qualityScores=False, HTML=False)
rawresponse = service.translate(model, bergamot.VectorString(input_text), options)
translated_text: str = next(iter(rawresponse)).target.text
message_text = f"Translated from {sl} to {tl} with Bergamot {model_name}."
except Exception as error:
response = error
return translated_text, message_text
@timer
@spaces.GPU
def translate_text(input_text: str, s_language: str, t_language: str, model_name: str) -> tuple[str, str]:
"""
Translates the input text from the source language to the target language using a specified model.
Parameters:
input_text (str): The source text to be translated
s_language (str): The source language of the input text
t_language (str): The target language in which the input text is translated
model_name (str): The selected translation model name
Returns:
tuple:
translated_text(str): The input text translated to the selected target language
message_text(str): A descriptive message summarizing the translation process. Example: "Translated from English to German with Helsinki-NLP."
Example:
>>> translate_text("Hello world", "English", "German", "Helsinki-NLP")
("Hallo Welt", "Translated from English to German with Helsinki-NLP.")
"""
sl = all_langs[s_language][0]
tl = all_langs[t_language][0]
message_text = f'Translated from {s_language} to {t_language} with {model_name}'
if not input_text or input_text.strip() == '':
translated_text = f'No input text entered!'
message_text = 'Please enter a text to translate!'
return translated_text, message_text
if sl == tl:
translated_text = f'Source language {s_language} identical to target language {t_language}!'
message_text = 'Please choose different target and source language!'
return translated_text, message_text
try:
if "-mul" in model_name.lower() or "mul-" in model_name.lower() or "-roa" in model_name.lower():
translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP_mulroa()
elif model_name == "Helsinki-NLP":
translated_text, message_text = Translators(model_name, sl, tl, input_text).HelsinkiNLP()
elif model_name == 'Argos':
translated_text = Translators(model_name, sl, tl, input_text).argos()
elif model_name == "QUICKMT":
translated_text, message_text = Translators(model_name, sl, tl, input_text).quickmt()
elif model_name == 'Google':
translated_text = Translators(model_name, sl, tl, input_text).google()
elif model_name == "Helsinki-NLP/opus-mt-tc-bible-big-roa-en":
translated_text, message_text = Translators(model_name, sl, tl, input_text).simplepipe()
elif 'mitre' in model_name.lower():
translated_text = Translators(model_name, sl, tl, input_text).mitre()
elif "m2m" in model_name.lower():
translated_text = Translators(model_name, sl, tl, input_text).mtom()
elif "small100" in model_name.lower():
translated_text = Translators(model_name, sl, tl, input_text).smallonehundred()
elif "rosetta" in model_name.lower():
translated_text = Translators(model_name, s_language, t_language, input_text).rosetta()
elif "lego" in model_name.lower():
translated_text = Translators(model_name, sl, tl, input_text).LegoMT()
elif "niutrans" in model_name.lower():
translated_text = Translators(model_name, sl, tl, input_text).niutrans()
elif "salamandra" in model_name.lower():
translated_text = Translators(model_name, s_language, t_language, input_text).salamandratapipe()
elif model_name.startswith('google-t5'):
translated_text = Translators(model_name, s_language, t_language, input_text).tfive()
elif 'flan' in model_name.lower():
translated_text = Translators(model_name, s_language, t_language, input_text).flan()
elif 'madlad' in model_name.lower():
translated_text = Translators(model_name, sl, tl, input_text).madlad()
elif 'mt0' in model_name.lower():
translated_text = Translators(model_name, s_language, t_language, input_text).bigscience()
elif 'bloomz' in model_name.lower():
translated_text = Translators(model_name, s_language, t_language, input_text).bloomz()
elif 'nllb' in model_name.lower():
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[s_language], languagecodes.nllb_language_codes[t_language]
translated_text = Translators(model_name, nnlbsl, nnlbtl, input_text).nllb()
elif model_name == "facebook/mbart-large-50-many-to-many-mmt":
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_many()
elif model_name == "facebook/mbart-large-50-one-to-many-mmt":
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_one_to_many()
elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
translated_text = Translators(model_name, s_language, t_language, input_text).mbart_many_to_one()
elif model_name == "facebook/seamless-m4t-v2-large":
translated_text = Translators(model_name, sl, tl, input_text).seamlessm4t2()
elif "m4t-medium" in model_name or "m4t-large" in model_name:
translated_text = Translators(model_name, sl, tl, input_text).seamlessm4t1()
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm_instruct()
elif model_name == "utter-project/EuroLLM-1.7B":
translated_text = Translators(model_name, s_language, t_language, input_text).eurollm()
elif 'Unbabel' in model_name:
translated_text = Translators(model_name, s_language, t_language, input_text).unbabel()
elif "winninghealth/WiNGPT" in model_name:
translated_text = Translators(model_name, s_language, t_language, input_text).wingpt()
elif "HPLT" in model_name:
if model_name == "HPLT-OPUS":
translated_text, message_text = Translators(model_name, sl, tl, input_text).hplt(opus = True)
else:
translated_text, message_text = Translators(model_name, sl, tl, input_text).hplt()
elif model_name == "Bergamot":
translated_text, message_text = Translators(model_name, s_language, t_language, input_text).bergamot()
except Exception as trerror:
translated_text = f'Error in main function "translate_text": {trerror}'
finally:
print(input_text, translated_text, message_text)
return translated_text, message_text
def swap_languages(src_lang, tgt_lang):
'''Swap dropdown values for source and target language'''
return tgt_lang, src_lang
def get_info(model_name: str, sl: str = None, tl: str = None):
helsinki = '### [Helsinki-NLP](https://huggingface.co/Helsinki-NLP "Helsinki-NLP")'
if model_name == "Helsinki-NLP" and sl and tl:
url = f'https://huggingface.co/{model_name}/opus-mt-{sl}-{tl}/raw/main/README.md'
response = httpx.get(url).text
if 'Repository not found' in response or 'Invalid username or password' in response:
return helsinki
return response
elif model_name == "Argos":
return httpx.get(f'https://huggingface.co/TiberiuCristianLeon/Argostranslate/raw/main/README.md').text
elif "HPLT" in model_name:
return """[HPLT Uni direction translation models](https://huggingface.co/collections/HPLT/hplt-12-uni-direction-translation-models)
['ar-en', 'bs-en', 'ca-en', 'en-ar', 'en-bs', 'en-ca', 'en-et', 'en-eu', 'en-fi',
'en-ga', 'en-gl', 'en-hi', 'en-hr', 'en-is', 'en-mt', 'en-nn', 'en-sq', 'en-sw',
'en-zh_hant', 'et-en', 'eu-en', 'fi-en', 'ga-en', 'gl-en', 'hi-en', 'hr-en',
'is-en', 'mt-en', 'nn-en', 'sq-en', 'sw-en', 'zh_hant-en']"""
elif "QUICKMT" in model_name:
return """[QUICKMT](https://huggingface.co/quickmt)
['ar', 'bn', 'cs', 'da', 'de', 'el', 'en', 'es', 'fa', 'fr', 'he',
'hi', 'hu', 'id', 'it', 'is', 'ja', 'ko', 'lv', 'pl', 'pt', 'ro', 'ru',
'sv', 'th', 'tr', 'ur', 'vi', 'zh']"""
elif model_name == "Google":
return "Google Translate Online"
else:
return httpx.get(f'https://huggingface.co/{model_name}/raw/main/README.md').text
with gr.Blocks() as interface:
gr.Markdown("### Machine Text Translation with Gradio API and MCP Server")
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens",
autofocus=True, submit_btn='Translate', max_length=512)
with gr.Row(variant="compact"):
s_language = gr.Dropdown(choices=langs, value = DEFAULTS[0], label="Source language", interactive=True, scale=2)
t_language = gr.Dropdown(choices=langs, value = DEFAULTS[1], label="Target language", interactive=True, scale=2)
swap_btn = gr.Button("Swap Languages", size="md", scale=1)
swap_btn.click(fn=swap_languages, inputs=[s_language, t_language], outputs=[s_language, t_language], api_visibility="private")
# with gr.Row(equal_height=True):
model_name = gr.Dropdown(choices=models, label=f"Select a model. Default is {DEFAULTS[2]}.", value=DEFAULTS[2], interactive=True, scale=2)
# translate_btn = gr.Button(value="Translate", scale=1)
translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, buttons=["copy"], lines=2)
message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False,
value=f'Default translation settings: from {s_language.value} to {t_language.value} with {model_name.value}.', lines=2)
allmodels = gr.HTML(label="Models with links:", value=', '.join([f'<a href="https://huggingface.co/{model}">{model}</a>' for model in models]),
show_label=False, container=True, css_template="""a {padding: 0px;}""")
model_info = gr.Markdown(label="Model info:", value=get_info(DEFAULTS[2], DEFAULTS[0], DEFAULTS[1]), buttons=["copy"])
model_name.change(fn=get_info, inputs=[model_name, s_language, t_language], outputs=model_info, api_visibility="private")
# translate_btn.click(
# fn=translate_text,
# inputs=[input_text, s_language, t_language, model_name],
# outputs=[translated_text, message_text]
# )
input_text.submit(
fn=translate_text,
inputs=[input_text, s_language, t_language, model_name],
outputs=[translated_text, message_text]
)
if __name__ == "__main__":
interface.launch(mcp_server=True, footer_links=["api", "settings"])
# interface.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860, mcp_server=True) |