Spaces:
Running
Running
File size: 20,852 Bytes
fcf2981 7181190 fa7de39 7181190 fa7de39 7181190 fa7de39 7181190 fcf2981 fa7de39 fcf2981 c7cffbb fcf2981 c7cffbb fcf2981 59e57ff fcf2981 59e57ff fcf2981 dfcb060 fcf2981 59e57ff fcf2981 59e57ff fcf2981 7181190 fcf2981 59e57ff fcf2981 59e57ff fcf2981 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
#!/usr/bin/env python3
"""
GPT-OSS Training Script
Specialized training script for OpenAI's GPT-OSS models
Based on the GPT-OSS fine-tuning tutorial
"""
import os
import sys
import argparse
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import LoraConfig, get_peft_model
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset
def load_gpt_oss_model_and_tokenizer(config):
"""Load GPT-OSS model and tokenizer with proper configuration"""
print("Loading GPT-OSS tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
print("Loading GPT-OSS model with quantization...")
# Import quantization config
from transformers import BitsAndBytesConfig
# Set up quantization config based on config
if config.quantization_config and config.quantization_config.get("load_in_4bit"):
# Use BitsAndBytesConfig for 4-bit quantization (memory optimized)
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
elif config.quantization_config and config.quantization_config.get("dequantize"):
# Try to use Mxfp4Config if available (as per tutorial)
try:
from transformers import Mxfp4Config
quantization_config = Mxfp4Config(dequantize=True)
except ImportError:
# Fallback to no quantization if Mxfp4Config not available
print("Warning: Mxfp4Config not available, using no quantization")
quantization_config = None
else:
# No quantization
quantization_config = None
# Model kwargs as per tutorial
model_kwargs = {
"attn_implementation": "eager",
"torch_dtype": torch.bfloat16,
"use_cache": False,
"device_map": "auto",
}
# Only add quantization_config if it's not None
if quantization_config is not None:
model_kwargs["quantization_config"] = quantization_config
model = AutoModelForCausalLM.from_pretrained(config.model_name, **model_kwargs)
return model, tokenizer
def setup_lora_for_gpt_oss(model, config):
"""Setup LoRA for GPT-OSS model"""
print("Setting up LoRA for GPT-OSS...")
# LoRA configuration as per tutorial
lora_config = LoraConfig(
r=config.lora_config.get("r", 8) if config.lora_config else 8,
lora_alpha=config.lora_config.get("lora_alpha", 16) if config.lora_config else 16,
target_modules=config.lora_config.get("target_modules", "all-linear") if config.lora_config else "all-linear",
target_parameters=config.lora_config.get("target_parameters", [
"7.mlp.experts.gate_up_proj",
"7.mlp.experts.down_proj",
"15.mlp.experts.gate_up_proj",
"15.mlp.experts.down_proj",
"23.mlp.experts.gate_up_proj",
"23.mlp.experts.down_proj",
]) if config.lora_config else [
"7.mlp.experts.gate_up_proj",
"7.mlp.experts.down_proj",
"15.mlp.experts.gate_up_proj",
"15.mlp.experts.down_proj",
"23.mlp.experts.gate_up_proj",
"23.mlp.experts.down_proj",
],
)
peft_model = get_peft_model(model, lora_config)
peft_model.print_trainable_parameters()
return peft_model
def load_dataset_from_config(config):
"""Load dataset based on configuration"""
dataset_name = getattr(config, 'dataset_name', 'HuggingFaceH4/Multilingual-Thinking')
dataset_split = getattr(config, 'dataset_split', 'train')
dataset_config = getattr(config, 'dataset_config', None)
print(f"Loading dataset: {dataset_name}")
print(f"Dataset split: {dataset_split}")
if dataset_config:
print(f"Dataset config: {dataset_config}")
# Load the dataset
if dataset_config:
dataset = load_dataset(dataset_name, dataset_config, split=dataset_split)
else:
dataset = load_dataset(dataset_name, split=dataset_split)
print(f"Original dataset size: {len(dataset)} examples")
# Apply filtering based on configuration
dataset = apply_dataset_filtering(dataset, config)
# Apply dataset processing based on format
dataset = process_dataset_format(dataset, config)
print(f"Final dataset size: {len(dataset)} examples")
return dataset
def apply_dataset_filtering(dataset, config):
"""Apply filtering based on configuration"""
# Filter bad entries if specified
if getattr(config, 'filter_bad_entries', False):
bad_entry_field = getattr(config, 'bad_entry_field', 'bad_entry')
bad_prompt_field = getattr(config, 'bad_prompt_field', 'bad_prompt_detected')
bad_response_field = getattr(config, 'bad_response_field', 'bad_response_detected')
original_size = len(dataset)
# Filter out bad entries
if bad_entry_field in dataset.column_names:
dataset = dataset.filter(lambda x: not x.get(bad_entry_field, False))
print(f"Filtered {original_size - len(dataset)} bad entries")
# Filter out bad prompts
if bad_prompt_field in dataset.column_names:
dataset = dataset.filter(lambda x: not x.get(bad_prompt_field, False))
print(f"Filtered bad prompts, remaining: {len(dataset)} examples")
# Filter out bad responses
if bad_response_field in dataset.column_names:
dataset = dataset.filter(lambda x: not x.get(bad_response_field, False))
print(f"Filtered bad responses, remaining: {len(dataset)} examples")
# Apply length filtering
min_length = getattr(config, 'min_length', 10)
max_length = getattr(config, 'max_length', None)
input_field = getattr(config, 'input_field', 'prompt')
target_field = getattr(config, 'target_field', 'accepted_completion')
if min_length > 0 or max_length:
def length_filter(example):
input_len = len(example.get(input_field, ''))
target_len = len(example.get(target_field, ''))
total_len = input_len + target_len
if total_len < min_length:
return False
if max_length and total_len > max_length:
return False
return True
original_size = len(dataset)
dataset = dataset.filter(length_filter)
print(f"Length filtering: {original_size} -> {len(dataset)} examples")
# Apply sampling if specified
max_samples = getattr(config, 'max_samples', None)
if max_samples and len(dataset) > max_samples:
dataset = dataset.shuffle(seed=42).select(range(max_samples))
print(f"Sampled {max_samples} examples from dataset")
return dataset
def format_gpt_oss_harmony(prompt, completion, add_eos_token=True):
"""
Format data for GPT-OSS Harmony format following the exact template structure.
Based on: https://huggingface.co/openai/gpt-oss-20b/raw/main/chat_template.jinja
"""
# GPT-OSS Harmony format structure (exact template compliance)
# User message: <|start|>user<|message|>content<|end|>
# Assistant message: <|start|>assistant<|channel|>final<|message|>content<|end|> (inference)
# Assistant message: <|start|>assistant<|channel|>final<|message|>content<|return|> (training)
harmony_text = f"<|start|>user<|message|>{prompt}<|end|><|start|>assistant<|channel|>final<|message|>{completion}"
if add_eos_token:
# Use <|return|> for training as per template specification
# This indicates the end of generation in training
harmony_text += "<|return|>"
else:
# Use <|end|> for inference
harmony_text += "<|end|>"
return harmony_text
def process_dataset_format(dataset, config):
"""Process dataset based on format configuration with exact GPT-OSS Harmony compliance"""
dataset_format = getattr(config, 'dataset_format', 'openhermes_fr')
input_field = getattr(config, 'input_field', 'prompt')
target_field = getattr(config, 'target_field', 'accepted_completion')
concatenate_fields = getattr(config, 'concatenate_fields', True)
field_separator = getattr(config, 'field_separator', '\n\n### Response:\n')
add_eos_token = getattr(config, 'add_eos_token', True)
use_harmony_format = getattr(config, 'use_harmony_format', True)
print(f"Processing dataset format: {dataset_format}")
print(f"Input field: {input_field}, Target field: {target_field}")
print(f"GPT-OSS Harmony Format: {'Enabled' if use_harmony_format else 'Disabled'}")
if dataset_format == "openhermes_fr":
# Process OpenHermes-FR format: prompt + accepted_completion
def format_openhermes_fr(example):
prompt = example.get(input_field, '')
completion = example.get(target_field, '')
if concatenate_fields:
if use_harmony_format:
# Use exact GPT-OSS Harmony format from template
text = format_gpt_oss_harmony(prompt, completion, add_eos_token)
else:
# Fallback to standard format with separator
text = prompt + field_separator + completion
if add_eos_token:
text += "</s>"
return {"text": text}
else:
# Keep separate for more advanced training setups
return {
"input": prompt,
"output": completion
}
dataset = dataset.map(format_openhermes_fr, remove_columns=dataset.column_names)
elif dataset_format == "messages":
# Process messages format (like HuggingFaceH4/Multilingual-Thinking)
def format_messages(example):
messages = example.get(input_field, [])
if use_harmony_format and len(messages) >= 2:
# Extract user and assistant messages for harmony format
user_message = ""
assistant_message = ""
for message in messages:
role = message.get("role", "")
content = message.get("content", "")
if role == "user":
user_message = content
elif role == "assistant":
assistant_message = content
if user_message and assistant_message:
# Use GPT-OSS Harmony format
text = format_gpt_oss_harmony(user_message, assistant_message, add_eos_token)
else:
# Fallback to simple concatenation
text = ""
for message in messages:
role = message.get("role", "")
content = message.get("content", "")
text += f"{role}: {content}\n"
if add_eos_token:
text += "</s>"
else:
# Standard format - convert messages to simple text
text = ""
for message in messages:
role = message.get("role", "")
content = message.get("content", "")
text += f"{role}: {content}\n"
if add_eos_token:
text += "</s>"
return {"text": text}
dataset = dataset.map(format_messages, remove_columns=dataset.column_names)
elif dataset_format == "text":
# Process plain text format
text_field = input_field
def format_text(example):
text = example.get(text_field, '')
if add_eos_token:
text += "</s>"
return {"text": text}
dataset = dataset.map(format_text, remove_columns=dataset.column_names)
elif dataset_format == "custom":
# Custom format - user handles this in their config
print("Using custom dataset format - no automatic processing")
return dataset
def setup_trackio_tracking(config):
"""Setup Trackio tracking if enabled"""
if not config.enable_tracking or not config.trackio_url:
print("Trackio tracking disabled or URL not provided")
return None
print(f"Setting up Trackio tracking: {config.trackio_url}")
# Import the correct TrackioAPIClient
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'trackio_tonic'))
from trackio_api_client import TrackioAPIClient
# Initialize Trackio client using the correct API
trackio_client = TrackioAPIClient(
space_id=config.trackio_url,
hf_token=config.trackio_token
)
return trackio_client
def create_sft_config(config, output_dir):
"""Create enhanced SFTConfig for GPT-OSS training"""
print("Creating enhanced SFT configuration...")
# Extract training parameters from config with enhanced defaults
num_train_epochs = getattr(config, 'num_train_epochs', 1.0)
max_steps = getattr(config, 'max_steps', None)
warmup_ratio = getattr(config, 'warmup_ratio', 0.03)
warmup_steps = getattr(config, 'warmup_steps', None)
# Learning rate configuration
learning_rate = config.learning_rate
lr_scheduler_type = getattr(config, 'scheduler', 'cosine_with_min_lr')
lr_scheduler_kwargs = getattr(config, 'lr_scheduler_kwargs', {"min_lr_rate": 0.1})
# Batch configuration
per_device_train_batch_size = config.batch_size
per_device_eval_batch_size = getattr(config, 'eval_batch_size', config.batch_size)
gradient_accumulation_steps = config.gradient_accumulation_steps
# Evaluation and logging
eval_strategy = getattr(config, 'eval_strategy', 'steps')
eval_steps = getattr(config, 'eval_steps', 100)
logging_steps = getattr(config, 'logging_steps', 10)
# Saving configuration
save_strategy = getattr(config, 'save_strategy', 'steps')
save_steps = getattr(config, 'save_steps', 500)
save_total_limit = getattr(config, 'save_total_limit', 3)
# Mixed precision
fp16 = getattr(config, 'fp16', False)
bf16 = getattr(config, 'bf16', True)
# Regularization
weight_decay = getattr(config, 'weight_decay', 0.01)
max_grad_norm = getattr(config, 'max_grad_norm', 1.0)
# HuggingFace Hub integration
push_to_hub = getattr(config, 'push_to_hub', False)
print(f" • Epochs: {num_train_epochs}")
print(f" • Learning rate: {learning_rate}")
print(f" • Batch size: {per_device_train_batch_size}")
print(f" • Gradient accumulation: {gradient_accumulation_steps}")
print(f" • Effective batch size: {per_device_train_batch_size * gradient_accumulation_steps}")
sft_config = SFTConfig(
# Training duration
num_train_epochs=num_train_epochs,
max_steps=max_steps,
# Learning rate
learning_rate=learning_rate,
lr_scheduler_type=lr_scheduler_type,
lr_scheduler_kwargs=lr_scheduler_kwargs,
warmup_ratio=warmup_ratio,
warmup_steps=warmup_steps,
# Batch configuration
per_device_train_batch_size=per_device_train_batch_size,
per_device_eval_batch_size=per_device_eval_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
# Model configuration
max_seq_length=config.max_seq_length,
gradient_checkpointing=getattr(config, 'use_gradient_checkpointing', True),
# Mixed precision
fp16=fp16,
bf16=bf16,
# Regularization
weight_decay=weight_decay,
max_grad_norm=max_grad_norm,
# Evaluation
evaluation_strategy=eval_strategy,
eval_steps=eval_steps,
# Logging
logging_steps=logging_steps,
# Saving
save_strategy=save_strategy,
save_steps=save_steps,
save_total_limit=save_total_limit,
# Output
output_dir=output_dir,
# Data loading
dataloader_num_workers=getattr(config, 'dataloader_num_workers', 4),
dataloader_pin_memory=getattr(config, 'dataloader_pin_memory', True),
# Performance
group_by_length=getattr(config, 'group_by_length', True),
remove_unused_columns=getattr(config, 'remove_unused_columns', True),
# HuggingFace Hub
push_to_hub=push_to_hub,
# Monitoring
report_to="trackio" if getattr(config, 'enable_tracking', False) else None,
)
return sft_config
def train_gpt_oss(config_path, experiment_name, output_dir, trackio_url, trainer_type="sft"):
"""Main training function for GPT-OSS"""
print("=== GPT-OSS Training Pipeline ===")
print(f"Config: {config_path}")
print(f"Experiment: {experiment_name}")
print(f"Output: {output_dir}")
print(f"Trackio: {trackio_url}")
print(f"Trainer: {trainer_type}")
# Load configuration
if os.path.exists(config_path):
import importlib.util
spec = importlib.util.spec_from_file_location("config_module", config_path)
config_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(config_module)
if hasattr(config_module, 'config'):
config = config_module.config
else:
# Try to find a config class
for attr_name in dir(config_module):
attr = getattr(config_module, attr_name)
if hasattr(attr, 'model_name') and ('gpt_oss' in attr.model_name.lower() or 'GPTOSS' in attr_name):
config = attr
break
else:
raise ValueError(f"No GPT-OSS configuration found in {config_path}")
else:
raise FileNotFoundError(f"Configuration file not found: {config_path}")
# Update config with runtime parameters
config.experiment_name = experiment_name
config.trackio_url = trackio_url
config.trainer_type = trainer_type
# Load model and tokenizer
model, tokenizer = load_gpt_oss_model_and_tokenizer(config)
# Setup LoRA
peft_model = setup_lora_for_gpt_oss(model, config)
# Load dataset
dataset = load_dataset_from_config(config)
# Setup Trackio tracking
trackio_client = setup_trackio_tracking(config)
# Create SFT configuration
sft_config = create_sft_config(config, output_dir)
# Create trainer
print("Creating SFT trainer...")
trainer = SFTTrainer(
model=peft_model,
args=sft_config,
train_dataset=dataset,
processing_class=tokenizer,
)
# Start training
print("Starting GPT-OSS training...")
trainer.train()
# Save model
print("Saving trained model...")
trainer.save_model(output_dir)
# Push to hub if enabled
if sft_config.push_to_hub:
print("Pushing model to Hugging Face Hub...")
trainer.push_to_hub(dataset_name="HuggingFaceH4/Multilingual-Thinking")
print("GPT-OSS training completed successfully!")
return trainer
def main():
parser = argparse.ArgumentParser(description="GPT-OSS Training Script")
parser.add_argument("--config", required=True, help="Path to configuration file")
parser.add_argument("--experiment-name", required=True, help="Experiment name")
parser.add_argument("--output-dir", required=True, help="Output directory for checkpoints")
parser.add_argument("--trackio-url", help="Trackio URL for monitoring")
parser.add_argument("--trainer-type", default="sft", choices=["sft", "dpo"], help="Trainer type")
args = parser.parse_args()
# Validate arguments
if not os.path.exists(args.config):
print(f"Error: Configuration file not found: {args.config}")
sys.exit(1)
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
try:
train_gpt_oss(
config_path=args.config,
experiment_name=args.experiment_name,
output_dir=args.output_dir,
trackio_url=args.trackio_url,
trainer_type=args.trainer_type
)
except Exception as e:
print(f"Error during training: {e}")
sys.exit(1)
if __name__ == "__main__":
main() |